Unmonitored Fault Detection in an AUV
Using Recurrent Neural Networks

Marc Ho

Submitted under the supervision of Junaed Sattar to the University Honors
Program at the University of Minnesota-Twin Cities in partial fulfillment of
the requirements for the degree of Bachelor of Science, cum laude in
Computer Science.

May 13, 2019



Abstract

Faults are an inevitability in any robotic system but are of a par-
ticularly devastating nature in underwater robotics. If unrealized, a
minor fault in an autonomous underwater vehicle (AUV) could easily
lead to the AUV unintentionally damaging itself, an accompanying
diver, or the marine environment in which it is operating. While
some types of faults can easily be detected with sensors on the AUV,
it is costly or impractical to have sensors installed to monitor every
potential point of failure on an AUV. In this paper, we present a
software system that enables an AUV to detect unmonitored faults
via the fault’s indirect effects on the AUV’s normal motion. This
system is composed of two primary components: a recurrent neu-
ral network(RNN)-based model that predicts the future motion of
an AUV and an anomaly detection algorithm that is able to de-
tect anomalies in the motion prediction error and decide whether the
anomalies indicate a fault occurred. To evaluate the performance of

this system, we demonstrate its effectiveness on data collected on an
AUV in both pool and field trials.

Keywords: Autonomous Underwater Vehicle — Deep Learning — Recur-
rent Neural Network — Fault Detection — Collective Anomaly



1 Introduction

Around the world, underwater robotics is an expanding field with a range of
commercial and industrial applications such as hull inspection, surveillance,
mapping, and data collection, among others. While underwater robots do
make it both easier and safer for humans to perform these tasks, oftentimes
such robots necessitate a human operator to manually teleoperate the under-
water robot’s every move. Furthermore, requiring a human operator for an
underwater robot then requires the underwater robot to be physically con-
nected by cable to some control unit since wireless signals cannot transmit
through water any significant distance. Enter autonomous underwater vehi-
cles (AUVs), underwater robots that are able to operate independently or in
concert with humans without directly needing a human operator and thus
can operate without a cable. Although first built during the 1960s [13], AUVs
have only started to gain commercial and academic traction recently due to
advances in computers’ processing capabilities, allowing AUV to better op-
erate independently. While such AUVs can perform tasks without human
operators, they need to have extremely robust internal systems to ensure
they are able to understand and complete their tasks effectively.

Regardless of how sophisticated a system is, with or without humans,
unforeseen problems can cause interference with the system’s operation. A
boat propeller could break an AUV’s flipper, seaweed could tangle an AUV’s

propeller blades, or an AUV’s motor could just cease to function due to wear



and tear. What makes these types of problems especially dangerous for an
AUV compared to analogous problems for human divers (e.g., cut arm by
propeller blade, leg stuck in seaweed) is that the AUV will not necessarily
realize that anything is wrong. Thus assuming that nothing has gone wrong,
an AUV would continue to perform its task as if everything was normal,
potentially exacerbating the damage to itself or causing new damage to hu-
man divers, nearby objects, and the environment. While adding sensors into
the AUV to directly monitor the aforementioned problems could allow the
AUV to detect said problems, it is not always feasible to do so. AUVs are
already heavily constrained in terms of hardware by operating on an under-
water platform of limited size, and accommodating more sensors would also
increase the AUV’s price significantly. Moreover, not every possible fault can

be anticipated and thus be accounted for by a sensor.

(a) Qatar Airways plane with damage (b) American Airlines plane with
to fuselage. Source: [8] runway marker embedded in wing.
Source: [5]

Figure 1: Two examples of damage incurred by airplanes that went unrealized
by the plane’s systems



This problem is not unique to AUVs and applies to many domains, most
notably in airplanes, where small unnoticed faults can escalate and have dis-
astrous consequences. While many airplanes and AUVs are able to account
for unforeseen faults like these by utilizing an autopilot system that auto-
matically adjusts for any changes affecting motion, the purpose of this paper
is slightly different. Such autopilot systems do correct for unexpected faults,
but they do not actively realize that said faults are happening. For example,
just in the past few years, such problems have occurred in airplanes where
the airplanes were damaged but proceeded to fly for hours without realizing
anything was wrong. On September 15, 2015 a Qatar airways flight incor-
rectly took off from a runway in Miami, clipping the approach lights at the
end of the runway, tearing a 46cm gash in the plane’s fuselage, and leaving 90
dents and scratches across the bottom of the plane as can be seen in Figure
la. Despite occurring during takeoff, this damage remained unnoticed until
the plane landed in Qatar 14 hours later [8]. Similarly, an American Airlines
flight on April 10, 2019 struck a runway distance marker while it was taking
off [5]. In this case, the pilots realized something was not quite right after
climbing to 20,000 feet, describing to ground control that “the plane is fine
right now” despite their contradictory report of an “uncontrolled bank 45
degrees to the left”. Regardless, the plane quickly returned to the airport
from which it took off at which point ground crews could directly see that the
marker had wrapped itself around and had become embedded in the wing as

shown in Figure 1. In both these cases, it should be noted that the planes



were still able to fly due to their human pilots’ and autopilot systems’ correc-
tions, but in both cases the plane itself was unable to tell that any damage
had occurred. While both these planes luckily did not suffer further compli-
cations, they stress the need for such systems, especially as more and more
autonomous vehicles are developed that do not have any humans directly

monitoring all actions.

Figure 2: Aqua8/Minnebot swimming over a reef

Without sacrificing too much generality of the system, this paper will fo-
cus on detecting motion-related faults in a 6-flipper AUV, pictured in Figure
2 that will be described in greater detail in Section 4. This AUV has one
of the aforementioned autopilot systems that is able to correct for the faults
we were testing such that its motion is roughly similar to normal. However,

like previously mentioned, this autopilot system is unable to detect that any



faults occur despite its ability to correct for faults.

To detect these unmonitored faults, we theorized that when these faults
occurred in our AUV, the swimming motion of the AUV would be affected.
As a result, if the swimming motion of the AUV deviated significantly from
its “normal” swimming motion, that would indicate that some fault had
occurred. As an analogy, if a car gets a flat tire, the car will veer to the side
even if its wheels are pointed straight. The driver is thus able to infer that a
tire is flat from how the car is not moving as it should. Similarly, we aimed
to design a system in our AUV that would simulate this human intuition to
infer whether or not a fault occurred.

To accomplish this goal, there were two primary components to the sys-
tem: a prediction module to predict how the AUV should move under nor-
mal conditions and an anomaly detection module to compare the predicted
motion with the actual motion of the AUV and decide if a fault has oc-
curred. Our prediction module utilizes a recurrent neural network with Long
Short-Term Memory cells to sequentially read in the variables relevant to
the AUV’s motion and, without needing much pre-processing, predict subse-
quent motion. The anomaly detection module utilizes a collective anomaly
detection algorithm that uses multiple thresholds to evaluate a series of pre-
diction errors to detect anomalies over series of data points rather than point
anomalies. After performing the collective anomaly detection algorithm, we
then implement a second “stacked” sliding window over the sliding windows

previously generated to make the final determination of whether or not a



fault occurred.

The main purpose of this thesis was to propose a method for accurate
prediction of an AUV’s motion and develop a method to detect anomalies
in the prediction error that indicate an unmonitored fault occurred. We
evaluate the proposed system’s effectiveness in a variety of situations to give
insight into the conditions under which it works effectively, the conditions
under which it is less effective, and why we see these results. This should
provide a basic proof-of-concept for this system from which further work
could be based to develop a more comprehensive anomaly detection system

for our AUV.

2 Background

2.1 Non-Deep Learning-based Approaches for Robotic

Anomaly Detection

While not much work has specifically been conducted on fault detection in
AUVs, there has been significant work done on detecting anomalies in robotic
platforms in general. One of the more common (and older) approaches for
online robotic anomaly detection is to use probabilistic models or graph anal-
ysis to analyze robotic sensory data to detect anomalies. In [4], the authors
split the problem of robot anomaly detection explicitly into a spatial and

temporal component to detect anomalies of each type separately. They use



self-organizing feature maps to perform spatial anomaly detection and utilize
a combination of common graph analysis tools and concepts based on prob-
abilistic graphical models to perform temporal anomaly detection. [6] also
attempts to develop an anomaly detection system with a similar purpose to
ours: to serve as an additional tool for the robot’s self-cognition rather than
a complete replacement. Their system implements this by building maps of
valid and invalid robot states and using a support vector machine to classify

between them.

2.2 Neural Networks

A relatively recent emerging tool for anomaly detection is the usage of deep
artificial neural networks (ANNs). ANNs are computational models that
are loosely based off theories for how biological neurons function. They
estimate complex non-linear functions to perform specific tasks by applying
aweights to the input data to create an estimate for some output parameter.
This model then “trains” itself on data to iteratively update its weights
to steadily increase the accuracy of its estimations. If multiple layers of
weights are applied in sequence between the input and output of an ANN,
it is then called a “deep” neural network. Artificial neural networks first
started growing in popularity in 1986 when the authors of [12] proposed the
usage of back-propagation to train ANNs to learn representations of features.
However, deep ANNs were still severely limited by the amount of time they

took to train until work such as that of [9] enabled the usage of GPUs to



train deep neural networks at rates orders of magnitude faster than before.

2.3 Usage of Simple ANNs for Prediction

Simple ANNs have been used directly for anomaly detection, but of more
particular import to our system is how accurately they are able to predict
data. In [7], the authors used a simple ANN to predict a ship’s motion up
to 10 seconds into the future for use in the deployment of “remote piloted
vehicles” (read: missiles). This setup is very similar to our own since this
work attempts to predict motion patterns in a water-borne vehicle based on
previous motion; however, it differs in form since it performs a single pre-
diction for a range of time whereas we want a system that actively performs
predictions as it receives more input data. While this work is able to pre-
dict within a reasonable degree of accuracy, simple ANNs lack a temporal
component since all previous motion is fed into the model together. While
the ANN model can learn to approximate the temporal relations of the data,
it is not as explicit within the structure of the network as it is in recurrent

neural networks.

2.4 Recurrent Neural Networks

Recurrent neural networks are a special class of neural networks that feed
data into the network as a sequence rather than all at once into the first layer

of the network. This better enables the network to understand a temporal



sequence if the ordering of the data plays a significant role in the accom-
plishment of the task that the network is trying to learn. Like the layers of
simple ANNs, each layer in an RNN receives the output of the previous layer,
and its output is passed on as input to the next layer. However, unlike the
layers of simple ANNs, each layer in an RNN can also take the next entry
in a sequence as input and give a separate output from the output that is
passed to the next layer.

A basic RNN possesses an internal state that is modified in each layer
by three sets of weights. The first and second sets of weights are used to
combine the output of the previous layer with the input at that timestep to
generate the new internal state. The third set of weights is then applied to
the internal state to generate the output of the RNN at that timestep. The
formal equations are defined in Equations (1) and (2) where the variables are

defined as follows:

e h;: internal state at timestep t

f;: activation function for internal state transition

Wy,: weights for internal state transition

W, weights for input calculations

e x;: input at timestep t

y¢: output at timestep t

10



e f . activation function for output calculation

e W,: weights for output calculation

he = fa(Wh * by + Wy x 2y) (1)

Yt = fo(Wo * ht) (2>

RNNs can be further differentiated from standard neural networks be-
cause each layer in an RNN has the same sets of weights, allowing RNNs to
process sequences of various lengths without issue. Moreover, RNNs can have
their layers stacked “vertically” where the vertical layers take the output of
the layers “under” them as an input to learn more complicated functions.
Due to these variable factors, RNNs have a wide variety of architectures that
can be chosen based on their intended task as shown in Figure 3 where 2’ is
the input at timestep ¢, the arrows indicate where weights are applied to the

internal state and input, and g is the output at timestep t.

2.5 Long Short-Term Memory

RNNs can be further modified by changing the calculations performed for
the state transition within the “RNN blocks” in Figure 3. One of the most
commonly used variants for the calculations is the Long Short-Term Memory
(LSTM) block. LSTMs implement a “memory cell” alongside the internal

state that retains long-term information whereas the internal state contains

11



© 900

RNN RNN RNN RNN RNN RNN
1 Block [ Block [ Block == | Block [™ | Block [ ™ Block [
(a) Many-to-one RNN (b) Many-to-many RNN

RNN RNN RNN

Block Block Block
RNN RNN RNN

]

(c) Offset input/output many-to-many RNN (d) Multi-layered many-to-
many RNN

Figure 3: Examples of various RNN architectures

short-term information. While LSTM blocks have greater computational
complexity than standard RNN blocks, they are generally more effective
than RNNs for performing tasks where important events are separated by
gaps of unknown duration since the memory cell is more invariant over mul-
tiple layers. Since their initial proposal in 1997, LSTMs have undergone

many changes to how their gates, memory cells, and activation functions are

12



implemented.

The most common variant of an LSTM differentiates itself from a stan-
dard RNN by including the aforementioned memory cell, an input gate, a
forget gate, and an output gate. These “gates” control how the information
in the internal state and the memory cell interact and are changed with each
subsequent layer in the network. The implementation for an LSTM is shown
below in Equations 4, 5, 6, 7, 8, and 9 where the variables are defined as the

following:
e C;: candidate cell state at timestep t
e ii: input gate at timestep t
o fi: forget gate at timestep t
e o;: output gate at timestep t
e h;: hidden “short-term memory” state at timestep t
e ¢i: “long-term memory” cell state at timestep t
e x;: input at timestep t

e o0: an activation function

e W: weights to apply to a distinct vector or matrix

¢y = tanh(Wey x 2y + W % hy_1) (3)

13



i = 0;(Wig * xp + Wip, % hy_q) (4)

fi=orWpp sz + Wy hy_q) (5)
C = fi* 1+ % G (6)

0r = 0o(Wor * 2 + Wop * hy_1) (7)
hy = oy * tanh(c;) (8)

ye = oy (Wy x hy) (9)

Equation 3 creates a new candidate cell state using the new input and
previous hidden state. Equations 4 and 5 then compute the input and forget
gates which respectively determine how to combine the candidate state and
the previous cell state to create the new cell state. Equation 6 then calculates
the new cell state by applying the input and forget gates to the previous cell
state and candidate cell state. Lastly, Equations 7 and 8 compute the output
gate and apply said output gate to the cell state to calculate the new hidden
state. Oftentimes, a last set of weights is applied to the hidden state to then

generate the output at each timestep like in Equation 9.

2.6 Usage of RNNs and LSTMs in Anomaly Detection

RNNs and specifically RNNs with LSTM blocks have been used extensively
for anomaly detection. The general procedure to use RNNs to perform

anomaly detection is to use them to predict future data in a sequence based

14



on previous data, then compare the predicted data with the actual data.
If the predicted data is shown to be significantly different from the actual
data by some metric, it can be deduced that an anomaly has occurred. This
method has proven successful for a variety of applications such as for ECGs,
space shuttles, power demand in electricity grids, and multi-sensor engines
[10]. In their work examining these applications, [10] used a multi-layered
RNN with LSTM blocks to predict future data in each dataset and then
evaluate the prediction accuracy with a Gaussian distribution to determine
if they were point anomalies. However, point anomaly detection will not
work for our application since anomalies indicating a fault on our AUV are
not point anomalies; they are collective anomalies. In [11], the authors use
an RNN with LSTM blocks to predict anomalies by directly thresholding
the prediction error to decide whether or not the sequence as a whole is
considered anomalous. While this method works in post, it is not a run-
time method like our system is intended to be, and even if a sliding window
were implemented, this method is often more prone to false positives since
individual points with large errors can skew the average.

Thus while both the above methods performed their intended goals, they
do not quite fit the goal we are trying to achieve. Like [10] and [11], [1] uses
an RNN with LSTM blocks to predict a sequence and then uses a collective
anomaly detection algorithm to detect anomalies that occur over time in the
prediction error. This work focused on network activity data for the purposes

of detecting cybersecurity intrusions, but this model should likely work well

15



for detecting motion-related faults in our AUV.

3 The Aqua AUV

The AUV used in our experiments is an amphibious AUV of the Aqua[2] fam-
ily formally named “Aqua8” and informally named “Minnebot”, pictured in
Figure 4. Unlike most AUVs that move using propellers or thrusters of some
sort, Minnebot uses six paddles, three on each side, to move, giving it five
degrees-of-freedom: X (surge), Z (heave), ¢ (roll), 6 (pitch), and ¢ (yaw).
Minnebot is a semi-autonomous underwater vehicle outfitted with three cam-
eras, two CPUs to separately handle motion and vision, a depth sensor, a
subcon for attaching external sensor payloads, and is planned to have an
onboard mobile GPU, the Jetson TX2, installed. The Jetson TX2 will not
be as powerful as an actual workstation GPU, but it will allow Minnebot to
run more computationally expensive tasks than most AUVs such as image
processing and the deep learning models we implemented in the prediction
module. Furthermore, Minnebot is outfitted with an inertial measurement
unit (IMU) that measures its angular velocity and linear acceleration at a
rate of 50hz.

For the purposes of this study, despite being capable of swimming au-
tonomously, Minnebot was manually teleoperated by a human while data
was recorded. While the connection of the fiber optic cable to Minnebot

to enable teleoperation could hypothetically affect swimming motion, such

16



Figure 4: Minnebot as viewed from the front

- |
IAJ’,X Pitch i

A i
GO

— Tl

Figure 5: The Aqua Robot’s Directions of Motion. Source: [3]

effects are expected to be negligible since minimal strain was placed on the

cable. A full subsystems breakdown of the Aqua8 AUV is shown in Figure

6.

17



/-‘;) I

)

>

Vision
computer.

o

A Q Al
P N

Figure 6: Breakdown of the Aqua8 subsystems. Source: McGill Mobile
Robotics Laboratory

3.1 Motion-related Faults and the IMU

In this study, we focused mainly on detecting motion-related faults that could
occur on Minnebot. The data used to define Minnebot’s motion consisted
of the angular velocity and linear acceleration values from the IMU and the
commands for the directions of motion. It should be noted that while the
IMU is fairly accurate for measurements of roll and pitch, yaw is harder to
measure. Since there is no “ground truth” zero-position for yaw, the IMU’s
yaw measurements are prone to drift over time, or various software internal

to the IMU adjusts yaw estimates in attempts to correct it.

18



3.2 Flippers

An example of a relatively common fault in Minnebot that would affect its
motion is the breakage of one of its flippers. The flippers it currently uses to
swim are made of carbon fiber and are secured to the actuators of the AUV
with screws, as shown in Figure 7a. These flippers are able to tolerate repet-
itive motions in the water to propel the AUV in various directions, but they
are brittle and prone to snapping if a solid object interrupts their motion. An
example of a broken flipper and a normal flipper is shown in Figure 7b. As
mentioned before, there is an autopilot system for Minnebot. The autopilot
interprets the commands to move along one of the directions of motion and
controls the six flippers’ motions accordingly to move in that direction. This
autopilot system enables the AUV to correct for flipper breakages fairly well,
as will later be shown empirically in Section 6. However, as previously men-
tioned, the goal of this system was to detect whether or not an error occurs

since the aforementioned autopilot system is unable to do so.

3.3 AUV Data Streams and Formatting

For this project, data was recorded from Minnebot in a closed environment
(a swimming pool) and an open environment (the ocean). The data recorded
from Minnebot to use as input for our prediction module consisted of Min-
nebot’s five intended motions and the six values representing the linear accel-

eration and angular velocity of Minnebot while doing so. These data streams

19



(a) A closeup image showing how (b) A side-by-side comparison of
the flippers are secured to Min- a broken and normal flipper
nebot

Figure 7: Images of Minnebot’s flippers

were recorded using the Robot Operating System (ROS) middleware at 50Hz
and then reduced to a rate of 10Hz for our network to simplify the computa-
tional complexity (i.e., the RNN computes 10 layers per second vs. 50 layers

per second).

4 State Prediction

The goal of this component was to develop a model that would predict the
future motion of Minnebot using past and present motion and intended mo-
tion data. This was accomplished by implementing a many-to-many recur-
rent neural network with Long Short-Term (LSTM) memory blocks using
Tensorflow, as depicted in Figure 3b.

As previously stated, we used a single-layered many-to-many RNN with

LSTM blocks containing 64 hidden units to perform our prediction of the

20



AUV’s motion. While it was initially considered that a many-to-one archi-
tecture could be used to encapsulate the entire problem without including
a collective anomaly detection component at all by outputting a likelihood
that a fault occurred, this did not quite fit the intended constraints of this
system. This system is intended to be implemented as a background system
running online on an AUV and constantly running an entire network for each
subsequent timestep would put significant computational load on the system.
A multi-layered RNN was also considered for this task, but similarly, it sig-
nificantly increases the computational load of this system to a degree that

would be prohibitive for the capabilities of an autonomous platform.

00¢

LSTM LSTM LSTM
Block Block Block

OO

Figure 8: Our specific LSTM network for our prediction module

The input to our model at each timestep was an 11-dimensional vector
containing the 5 raw “commands” that Minnebot tries to perform and the
6-dimensional IMU data. While normalization or some other form of pre-

processing would likely have yielded better predictions and training time for

21



our network, it was chosen to use the raw data from the AUV to keep the
computational overhead of the system as low as possible. The LSTM blocks
were then implemented with 64 hidden units, and lastly the output at each
timestep was a 6-dimensional vector representing the predicted IMU data at
the subsequent timestep, which at a rate of 10Hz was 0.1 seconds later (i.e.,
at each moment the model predicts the IMU data 0.1 seconds in the future).
A slightly modified LSTM graph depicting this is shown in Figure 8 where
x and y are the aforementioned input and output data, respectively. The
loss at each timestep was then determined by comparing this predicted IMU
data with the actual IMU data for the next timestep and calculating the
mean squared error as shown in Equation 10 where ¢ is the predicted IMU
data and y is the actual IMU data. Initially, a loss function using the total
relative error was attempted, but this proved unsuccessful as the IMU and
command data ranges from -1 to +1 and would often oscillate around values
close to zero, resulting in huge relative errors which prevented the network

from converging.

L<t> _

(gi<t+1> _ yi<t+1>)2 (1())
1

1
6 4

6
1=

5 Prediction Error Anomaly Detection

After predicting the future motion of the AUV, the predicted IMU values

need to be analyzed to determine if the predictions deviate significantly

22



enough from the actual observed IMU values to be indicative of a fault.
This was accomplished via the below anomaly detection algorithm based off
the one described in [1].

The first component of the anomaly detection module implemented a
sliding window-based algorithm like the one described in [1]. While the
previous work used relative error for its error calculations, we used absolute
error due to the problems of relative error described in Section 4. Irrespective
of this difference, the initial component of our anomaly detection algorithm
mirrored this algorithm in all other ways. This algorithm monitors three
key values in each sliding window examined: the absolute error, the danger
coefficient, and the average absolute error.

(11)

DangerCoefficient =

S
W 7

M= =l=

AverageAbsoluteError = g — v (12)

1

The absolute error is calculated for each individual point within the win-
dow and is thresholded to determine if a point is considered anomalous. The
danger coefficient, as shown in Equation 11, is the proportion of points within
a sliding window that are considered anomalous by their absolute error, where
N is the number of points considered anomalous in the window and W is the
size of the window. The average absolute error is shown in Equation 12 and,
as it sounds, is the average absolute error for all points within the sliding

window, where W is the size of the window, ¢ is the predicted data, and y is

23



the actual data. After calculating the danger coefficient and average absolute
error for the window, these are also both then thresholded, and if both of
these values exceed their thresholds, the sliding window is classified as being
a collective anomaly as shown in Algorithm 1 where o and S are the chosen
thresholds for the danger coefficient and average absolute error, respectively.
Since [1] was explicitly focused on cybersecurity collective anomaly detection
where there is a more explicitly determined “minimum attack time” that
determines the size of the sliding window, we treated the size of the sliding
window as another tunable parameter. The optimal window size and these
thresholds change depending on the task and their tuning is described in

more detail in Section 6.

Algorithm 1 Collective Anomaly Detection Algorithm

1: for all windows do
2: if DangerCoefficient > o && AverageAbsoluteError > £ then

3: CollectiveAnomalyDetected
4: end if
5: end for

To further refine our anomaly detection system since the faults we were
examining are more of a state of being for Minnebot rather than a discrete
temporary event like in the cybersecurity application in [1], we implemented
a stacked sliding window that would slide over and examine the sliding win-
dows created by Algorithm 1 in the previous step to make the final verdict
of whether or not a fault occurred. This second stacked sliding window func-

tioned in a simpler way than the previously derived sliding windows and just

24



classified the window based on the proportion of sliding windows that were

classified as collective anomalies.

6 Experimental Evaluation

6.1 Description of Datasets

There were 11 datasets collected over a period of 8 months of Minnebot
swimming in both a pool and in the ocean in Barbados with various other pa-
rameters changed to observe the effectiveness of the prediction and anomaly
detection modules. Descriptions of the datasets are given in Table 1.

For a more detailed description of Datasets 9, 10, and 11, these datasets
were collected to more directly simulate a fault that occurred while a robot
was actively swimming. Dataset 9 proved fairly ineffective at simulating this,
as the tape created a “floppy” connection between the flipper and the AUV’s
actuators rather than a rigid connection to simulate normal motion. Datasets
10 and 11 attempted to remedy Dataset 9’s issue by repairing previously
broken flippers with marine epoxy, but only moderately repaired the flipper
so that repeated motion of the flipper in the water would eventually cause
the repaired flipper to snap. This would allow a more robust observation
of our system’s effectiveness in actively switching from not detecting a fault
to detecting a fault. Unfortunately, the intentionally badly repaired flippers
were a little too fragile, leading the half-repaired flipper in Dataset 10 to

immediately break again upon the first motion of the actuators. Having seen

25



how the flipper broke so easily when recording Dataset 10, for Dataset 11 we
attempted to reinforce the badly-repaired flipper using duct tape to the best
of our ability. While the flipper’s marine epoxy repair snapped immediately,
the tape held the flipper in place better compared to Dataset 9 but still had

the same “floppy” flipper motion.

Missing Flippers Location | Special Notes

Dataset 1 | None Pool N/A

Dataset 2 | None Pool N/A

Dataset 3 | None Pool Swimming .in front of a
pool waterjet

Dataset 4 | Front-Left Pool N/A

Dataset 5 | None Ocean N/A

Dataset 6 | Front-Left Ocean Autopilot system enabled

Dataset 7 | Middle-Left Pool N/A

Dataset 8 | Front & Middle-Left | Pool N/A

Dataset 9 | See special notes Pool fg%ﬁ;ﬁfﬁaﬁlﬁ?gﬁ toz}?ed on

Dataset 10 | See special notes Pool Fragﬂe front-right flipper
intended to snap
Fragile front-right flipper

Dataset 11 | See special notes Pool intended to snap but
taped on

Table 1: Description of the datasets recorded and used in this project

6.2 The Training of the RNN

For the training of our RNN with LSTM blocks, we trained on data from
Datasets 1 and 2 as they represented the normal swimming conditions of

Minnebot, isolated from extraneous factors that could affect the motion of the

26



AUYV. Due to constraints on the implementation of LSTMs in Tensorflow, the
model was not trained on the two datasets simultaneously, but was trained
sequentially for 2000 epochs on each dataset. Figure 9 demonstrates the
convergence of the model during training where the test set is from an isolated
subset of Dataset 1 (i.e., no overlap with the training set). Since the datasets
were not trained concurrently, they were concatenated together in the order
in which they were trained (1 then 2). As can be seen in the figure, there is a
slight kink in the training data error at epoch 2000 when the model switches
from training on Dataset 1 to training on Dataset 2 but as can also be seen,
the training and test set errors converged again. At the end of training,
the training set error was 0.00084 whereas the test set error was 0.00552,

indicating that some degree of overfitting did occur.

Average Absolute Error
Dataset 1 0.04375
Dataset 2 0.01968
Dataset 4 0.09009
Dataset 5 0.07893
Dataset 6 0.08010
Dataset 7 0.08572
Dataset 8 0.11010

Table 2: Average absolute error for the datasets in which the AUV attempts
to perform normal swimming motion

Then, using this now trained model, we ran it over Datasets 1-11 to
perform predictions for each of the datasets to observe a time series of the

absolute error of the predicted IMU data when compared to the actual IMU

27



—— Training Data Error
Test Data Error

o
[++]
1

o2
(=11
1

Mean Squared Error in IMU Predicted Values
o o
[ -y
1 1

o2
=
1

|

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
Epochs

Figure 9: Convergence of the RNN on the training data

data. These predictions are depicted in Figures 10 and 11 in time series
graphs representing the prediction error for each dataset. In these figures, the
x-axis is the timesteps in each dataset, and the y-axis is the average absolute
error in the predicted IMU values at each timestep. It should be noted that
the predictions for Datasets 1 and 2 were performed on separate sequences
within the dataset than the sequence on which the RNN was trained.
Before performing any collective anomaly detection algorithms, we can
perform a visual inspection of the time-series graphs and make some obser-
vations about the quality of the predictions. It can be seen that Datasets
4, 7, and 8, the datasets in which flippers were removed and the AUV was

swum under normal conditions, exhibit greater degrees of error than their

28



counterparts in Datasets 1, 2, and 5 where no flippers were removed. This
difference can be seen more empirically in Table 2. As can be viewed in the
table, Dataset 5’s predictions are not as accurate as Datasets 1 and 2, which
is likely due to the fact that it was recorded in the ocean under different
environmental conditions than the data the model was trained on.

While it is not directly relevant to the goal of this work, it is of particu-
lar interest that the error of predictions in Datasets 5 and 6 is very similar,
despite the fact that Dataset 6 was collected with a flipper removed. This is
likely due to Minnebot’s autopilot system that was mentioned before. The
closeness of the errors in the predictions between Datasets 5 and 6 is a testa-
ment to the robustness of the autopilot system but like previously mentioned,
the autopilot system does not realize that any fault had occurred, despite its

ability to correct for it.

6.3 Tuning the Collective Anomaly Detection Algo-

rithm

To tune the collective anomaly detection algorithm, we needed to choose
values for the size of the sliding window, the absolute error threshold, the
danger coefficient threshold, and the average absolute error threshold. To
determine the best values for these parameters we created an algorithm that
tested randomized permutations of these parameters that we steadily fine-

tuned to maintain a collective anomaly classification rate of less than 5% for

29



mmmmmmmmmmmmmmmmm

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3
(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

Figure 10: The absolute error of predictions on Datasets 1-6

the sliding windows for the normal swimming data (Datasets 1 and 2) and a
collective anomaly classification rate of greater than 50% for the sliding win-
dows in abnormal swimming data (Datasets 4, 7, 8). Through this process,
we found that a window size of 45 timesteps (4.5 seconds), an absolute error
threshold of 0.03, a danger coefficient of 0.5, and an average absolute error
threshold of 0.075 consistently produced the greatest difference in collective
anomaly classification rates between the normal and abnormal swimming
data.

Finally, having predicted if there were collective anomalies in each sliding
window, we performed the second stacked layer of sliding windows (of size
95 and thus capturing data from windows spanning 9.5 seconds) on top of

the previously derived sliding windows determining if the stacked window is

30



mmmmmmmmmmmmmmmmm

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9

00
0 1500 2000 2500 3000 0 200 40 600 80 1000 1200 1400
mmmmmmmm Timestamp

(d) Dataset 10 (e) Dataset 11

Figure 11: The absolute error of predictions on Datasets 7-12

anomalous by classifying based on a threshold of 30% of its windows being
collective anomalies, giving us Figure 12. In this figure, each dataset is
represented as a time series where a red dot indicates that the stacked sliding

window centered at that timestep was considered anomalous.

6.4 Results

Examining the final results of the collective anomaly detection step, it is diffi-
cult to present a metric that evaluates the effectiveness of our fault detection
system. As it should, it does not detect any anomalous data in Datasets
1 and 2, shown in Figures 12a and 12b, but the other datasets technically
do not present anything conclusive. Ideally Datasets 4, 7, and 8 would be

consistently reporting an anomaly for 100% of their duration since they were

31



(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

(g) Dataset 7 (h) Dataset 8 (i) Dataset 9
(j) Dataset 10 (k) Dataset 11

Figure 12: The timesteps in Datasets 1-11 which were classified as anomalous

missing flippers for the entirety of the time they were recorded, but as can be
seen in Figures 12d, 12g, and 12h, they detect anomalies for a clear majority
of their duration but not all (excepting Dataset 8). It can be noted in Table
3 that Dataset 8 was determined to have an anomaly for a full 100% of its
duration, a better result than Datasets 4 and 7’s results. This is likely due
to the greater degree of prediction error caused by missing multiple flippers
at once.

Unfortunately, our model’s malleability with respect to differing environ-

32



mental conditions is not as clearly supported as is evidenced by Dataset 5
in Figure 12e reporting an average anomaly detection rate of 73.8%. Like
Datasets 1 and 2, Dataset 5 was recorded with all flippers attached as the
AUV performed normal swimming motions but in the open ocean rather
than in a swimming pool. While this anomaly detection rate is lower than
that of the actually anomalous datasets (Datasets 4, 7, and 8), it is report-
ing a false positive much more than it should to be used in any capacity.
Given that the RNN was trained exclusively on Datasets 1 and 2 which were
recorded in a pool, it is likely that differences in environmental conditions
like currents and waves and differences in ballasting on Minnebot could have
affected the quality of the predictions. Surprisingly, despite our initial obser-
vations about the relatively low (compared to Datasets 4 and 7) errors in the
predicted motion of Dataset 6, Dataset 6 had an average anomaly detection
rate of 81.7%, a rate on an order similar to that of Datasets 4 and 7, its

closed-water counterparts.

Percent of Stacked Sliding Windows
Classified as Anomalies

Dataset 1 0%

Dataset 2 0%

Dataset 4 84.2%
Dataset 5 73.8%
Dataset 6 81.6%
Dataset 7 95.5%
Dataset 8 100.0%

Table 3: Percent of stacked sliding windows in select datasets classified as
anomalies

33



Interestingly, Dataset 3, shown in Figure 12c, seems to show that despite
the model’s poor ability to adjust to significant environmental differences, it
possesses a resistance to minor, uncontrolled environmental events. As can
be seen in Figure 10c, the prediction error certainly increases in the time
series as the AUV swims in front of the waterjet and gets pushed around
briefly, but this temporarily erroneous predicted motion is not reported as
an anomaly even once by our prediction error anomaly detection algorithm.

Lastly, Datasets 9, 10, and 11, shown in Figures 12i, 12j, and 12k are
unable to present us with much useful information. If they had worked as
intended and Minnebot had begun by swimming normally until a flipper
broke, we would see ideally see no anomalies reported at all until the simu-
lated breakage occurred at which point it would be classified as anomalous
for the remainder of the time series. At first glance, Dataset 10 seems to pos-
sibly be depicting this situation, but as mentioned at the beginning of this
Section, the flipper broke immediately after the data started being recorded.
In accordance with this, Dataset 10 should likely be similar to Datasets 4
and 7 since it effectively is a dataset in which one flipper was missing for
the majority of its duration. Datasets 9 and 11, on the other hand, both
presented anomaly detection rates of 100%, as shown in Figures 12i and 12i.
We theorize that this is a result of how we simulated the breakage of the flip-
per using tape. While the broken flipper was technically still attached to the
actuators of the AUV, the “floppy” motion of the flippers due to the taped

connection caused the motion of the AUV to differ from normal motion even

34



more than if the flipper had broken entirely.

Even though the issues recording Datasets 9, 10, and 11 presented prob-
lems, our anomaly detection system does accomplish its goal of being a tool
to assist in the AUV’s self-awareness. While the system does not continually
and invariably report that a fault occurred when a fault does occur, it is
consistently reporting more than 80% of the time that a fault was detected.
While the system certainly needs work to allow it more environmental flexi-
bility, if it has experience in the environment in which its swimming, it very

importantly does not report false positive fault detections.

7 Conclusion and Future Work

In this thesis, we present a system for robotic anomaly detection in our
AUV that detects faults that are not directly monitored in any way. This
system would ideally be run in real-time on an AUV to assist it in realizing
when these unmonitored faults occur to aid in decision-making. This was
accomplished by implementing a two-step system: a prediction module to
predict future motion of the AUV and compare it with the actual motion and
a simpler anomaly detection module to analyze the errors of the predictions.

The results indicate that this system is able to accurately predict the
AUV’s future motion and determine if a fault has occurred if the AUV is
operating in a known environment. Equally important is that it does not

show any false positives in our datasets, thus avoiding the classic “boy who

35



cried wolf” problem. While these results are limited in scope, they present
a good proof-of-concept for this system upon which further work can be
conducted.

Future work on this system could work on expanding the training set
to enable our prediction system to be more generalized to varying environ-
mental conditions rather than “perfect” conditions in a pool. Other avenues
of development are varying architectures of the RNN such as the number
of hidden units, usage of Gated Recurrent Units in place of LSTM blocks,
and dropout to reduce overfitting. Furthermore, it would be important to
evaluate the efficiency of our system when run directly on Minnebot’s hard-
ware rather than a grounded workstation. Additional features that could be
added to this system could include diagnoses of the detected flippers (i.e.,
which flipper broke) and communication methods for Minnebot to indicate
to a human that it detects a fault. We hope that starting with this work,
this system will eventually be robust enough to aid in the safe deployment

of AUVSs to perform the necessary work they do.

8 Acknowledgments

We are thankful for the assistance of Michael Fulton, Jungseok Hong, Md
Jahidul Islam, and Junaed Sattar for their assistance in collecting the datasets

in both pool and ocean trials used in this project.

36



References

1]

L. Bontemps, V. Cao, J. McDermott, and N. Le-Khac. Collective
Anomaly Detection Based on Long Short-Term Memory Recurrent Neu-
ral Networks. In Future Data and Security Engineering: Third Interna-

tional Conference, pages 141-152, 2016.

G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L. Torres-
Mendez, M. Jenkin, A. German, A. Hogue, A. Ripsman, J. Zacher,
E. Milios, H. Liu, P. Zhang, M. Buehler, and C. Georgiades. Aqua: An

amphibious autonomous robot. Computer, 40(1):46-53, Jan 2007.

Philippe Giguére. Unsupervised Learning for Mobile Robot Terrain Clas-
sification. PhD thesis, McGill University, Dec 2009.

Kai Haussermann, Oliver Zweigle, and Paul Levi. A novel framework for
anomaly detection of robot behaviors. Journal of Intelligent & Robotic

Systems, 77(2):361-375, Feb 2015.

Madeline Holcombe. An American Airlines flight returned to JFK after

hitting a sign during takeoff. CNN, 2019.

R. Hornung, H. Urbanek, J. Klodmann, C. Osendorfer, and P. van der
Smagt. Model-free robot anomaly detection. In 2014 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pages 3676—
3683, Sep. 2014.

37



[7]

[10]

[11]

[12]

[13]

Ameer Khan, Cees Bil, Kaye E. Marion, and Mitchell Crozier. Real-
time prediction of ship motion and attitude using advanced prediction
techniques. In Congress of the International Council of the Aeronautical

Sciences, 2004.

Peter Kovessi. Report: Qatar Airways fires pilots involved in Miami

takeoff incident. Doha News, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097-1105. Curran

Associates, Inc., 2012.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal.
Long short term memory networks for anomaly detection in time series.

In ESANN, 2015.

A. Nanduri and L. Sherry. Anomaly detection in aircraft data using
Recurrent Neural Networks (RNN). In 2016 Integrated Communications

Navigation and Surveillance (ICNS), pages 5C2-1-5C2-8, April 2016.

D. Rumelhart, G. Hinton, and R. Williams. Learning representations

by back-propagating errors. Nature, 323(6088):533-536, Oct 1986.

H.R. Widditsch. SPURV - The First Decade. Technical report, Univer-

sity of Washington Applied Physics Laboratory, 1973.

38



