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Abstract

Underwater robotics is a motivating field of research with a wide variety of both
industrial and scientific applications. In particular, the development of autonomous
underwater vehicles to assist divers in performing difficult, dangerous, or undesirable
tasks has the potential to expand our abilities in the aquatic domain while reducing the
risks presented to divers. For a diver and an autonomous underwater vehicle to work
in collaboration, there must be an established interaction protocol; the study of such
protocols is central to the field of human-robot interaction. In the underwater domain,
the attenuation of both electromagnetic signals and sound limits these traditional com-
munication protocols, leaving machine vision as the primary perception methodology.
Thus gestures become a natural choice for diver-robot communication. Since pointing
gestures are represented and recognized in cultures around the world, they serve as a
foundational, natural gesture for divers in a demanding aquatic environment. Thus, in
this work we lay the groundwork for implementing a pointing gesture recognition algo-
rithm for use onboard autonomous underwater vehicles. Specifically, we contribute a
human study of individuals performing four classes of pointing gestures, three datasets
developed to study pointing gestures, and an analysis of four state-of-the-art object

detection frameworks for recognizing pointing gestures in the aquatic domain.
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Chapter 1

Introduction

In current scientific exploration, robots are the vanguard, taking us where no human
has yet dared to venture. Prominent today is exploration in space, where the Perse-
verance rover and Ingenuity helicopter are exploring the surface of Mars [7]. However,
there still remain new frontiers much closer to home. While much of Earth’s terra
firma has been traversed and mapped, the bodies of water covering over 70 percent
of the surface of the earth remain largely unexplored [§]. Using robotics to explore
aquatic environments can help us learn more about this domain to not only become
better stewards of our planet, but also to work more safely where human activity inter-
sects the aquatic domain. With the aquatic domain being by nature a challenging and
potentially life-threatening environment for divers, developing autonomous underwater
vehicles (AUVs) which can work collaboratively with divers in this space would greatly
lower risk to human life, while extending our current capabilities. Developing an in-
teraction framework where divers can instruct robots and transfer responsibilities for
tasks that are difficult, dangerous, or undesirable for the divers to perform themselves is
therefore a key component of research in underwater human-robot interaction (U-HRI)
(Figure [1.1). In such a challenging environment for both diver and machine, we seek
a fundamental communication system which is natural for both diver and robot; for
divers, such a communication modality is already implemented in diver sign language
[9]. Research in underwater human robot interaction has consequently taken inspiration
from diver sign language to develop control systems for AUVs based on token gestures

which are mapped to specific commands. To expand beyond these fundamental control
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systems, developing a gesture recognition system for more general and natural gestures
seems a logical progression. Around the world, each culture appears to have some form
of a pointing gesture to indicate direction, with its ubiquity making it considered a
“building block of human communication” [10]. Thus we propose that developing a
robust algorithm for recognizing pointing gestures underwater is a crucial step toward
natural, effective, and intuitive human-robot interaction with autonomous underwater

vehicles. This introduction serves to more fully ground and motivate this research topic.

(a) (b)

Figure 1.1: Underwater human-robot interaction scenarios with the (a) AQUA robot

[1] and (b) LoCO AUV [2].

1.1 Motivation for Underwater Robotics

Underwater robotics has many application areas supporting stewardship of our planet,
conservation efforts, industrial activities, and scientific exploration. By the nature of
the water cycle, trash is being swept into our rivers, and ultimately our lakes and
rivers. This problem scales quickly when non-biodegradable material contaminates our
waterways and affects ecosystems [I1]. Underwater robotics has already demonstrated
the capability of visually detecting and identifying underwater trash, a first step towards
the ultimate goal of “exploration, mapping, and extraction of such debris by using
AUVs” [12]. Beyond underwater trash, our oceans also contain WWII munitions and

unexploded ordinance, which can be identified and potentially disarmed by underwater
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vehicles [I3] [14]. In the area of conservation, there are plentiful opportunities for
underwater robotics to support wildlife monitoring, as well as track the spread of invasive
species [15].

Underwater robotics can also be applied in areas with more natural room for human-
robot interaction such as industrial applications, search and rescue missions, and sci-
entific exploration. Mueller et al. have already demonstrated diver-robot collaborative
ventures for underwater bridge inspection for damage post-flood disasters [16], [17].
Further, ship inspection, a dangerous activity primarily performed by divers, is increas-
ingly being performed with the aid of AUVs [18]. Protocols for underwater search and
rescue, an inherently dangerous yet crucial task, are currently under development [I7].
Even underwater archaeological missions [19] and marine biology surveys [20] are using
underwater vehicles to support their work.

Inherently an adverse environment for both man and machine, the aquatic domain
has constraints which present unique challenges. Divers are constrained by the physical
limitations of the human body to handle the pressure of water at depth, thermoregu-
lation in the aquatic environment, and dependence on an external oxygen supply for
respiration underwater. This makes diving an inherently dangerous activity. For an
underwater vehicle, the attenuation of electromagnetic signals and diffusion of sound
waves render these traditional communication modalities highly ineffective. Machine
vision-based communication methods are thus a natural choice for underwater percep-
tion for AUVs; however, this modality is also challenged by the unusual optical effects
of light in water, namely refraction, backscattering, and attenuation [21], as well as
limited visibility due to water quality (Figures and . Thus the challenge of cre-
ating autonomous underwater vehicles (AUVs) capable of assisting divers in performing

difficult, dangerous, or undesirable tasks is a central motivation for this work.

1.2 Human-Robot Interaction for Autonomous Vehicles

In order for a diver and an AUV to work together, there must be an established interac-
tion protocol. Study of such protocols is the focus of the field of human-robot interaction
(HRI). Our specific area of interest is human-robot interaction with autonomous vehicles

in field robotics; this domain is particularly challenging due to the inherent variability



Figure 1.2: Examples of the challenging, visually degraded imagery faced underwater,

with enhancements made by [3]

of environmental conditions and the wide range of potentially desirable interaction ca-
pabilities. Due to these obstacles, human-robot communication modalities for working
with autonomous vehicles is a widely explored area.

In the terrestrial realm, communication between humans and autonomous vehicles
can take multiple forms, depending on the application. With the voice being the most
natural communication vector from person-to-person, autonomous vehicles have been
equipped with microphones and auditory processing algorithms, enabling instruction
through vocal commands [22]. Beyond sound, person-following robots have also utilized
haptic technology for human control, with signals received through force sensors [23] [24].
Moving away from direct auditory or tactile interactions, a remote control smartphone
interface has even been introduced for controlling autonomous luggage [25]. Beyond
these, gestures are yet another communication modality for robustly interacting with
an autonomous vehicle, with the signals being captured by either sonar or traditional
monocular or stereo cameras [26] [27].

Given these varied options for human-robot interaction, due to the extreme attenu-
ation of electromagnetic signals and distortion of sound underwater, the most natural

modality for underwater human-robot interaction is through machine vision with a



(a) (b)

Figure 1.3: Examples of the challenging perception environment underwater, with (a)
attenuation (image courtesy of the McGill Mobile Robotics Lab) and (b) backscattering

with additional occlusion due to bubbles and water quality.

monocular or stereo camera.

1.3 Gestural-Based Communication

When using monocular or stereo cameras as a primary means of perception, gestures
become a natural means of control for autonomous vehicles. In their survey of gesture
recognition algorithms, Mitra et al. identify three broad categories of gestures: hand
and arm gestures, head and face gestures, and full-body gestures [28]. Each of these
classes of gestures has been used to direct autonomous vehicles. Hand and arm gestures
naturally comprise many instructions, not the least among them being pointing gestures.
Head and face gestures can convey agreement or dissent through a head shake or nod
[29], while gaze has even been used to single out individual robots for further instruction
[30]. Full-body gestures allow the relative position of the arms to the rest of the body
to become the basis for gestures [31]. All of these categories of gestures together can
form a robust communication system, as demonstrated by Canal et al. in [29], where
they develop a gesture recognition system for humanoid robotic assistants.

In the aquatic domain, gestures are currently the central means of communication
between divers and autonomous vehicles for various reasons (Figure. The aforemen-

tioned challenges of the underwater domain lead machine vision to be the primary mode
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of perception; however, this is particularly advantageous for additional reasons. Divers
controlling an autonomous vehicle underwater are already under heavy cognitive load
without the introduction of a robot, balancing tasks such as monitoring their dive gear,
maintaining proper depth, and managing their orientation in a six degrees-of-freedom
environment. These critical responsibilities require a baseline level of a diver’s atten-
tion, which is further occupied with accomplishing the dive mission. As autonomous
vehicles are intended to aid divers rather than put additional strain on their cogni-
tive abilities, creating the most natural communication interface between autonomous
underwater vehicle (AUV) and diver is critical. With gestures being a fundamentally

familiar non-verbal means of communication, they are a logical choice for control of

AUVs.

(a) (b) ()

Figure 1.4: Underwater gestures from an ocean trial.

1.4 Pointing Gestures

Pointing gestures are a key nonverbal communication modality in collaborative sce-
narios, fundamentally conveying the directionality associated with an interaction or

bY A4

command. Consider the phrases “the cafeteria is down that hallway,” “please bring me
that box,” “exit through that door,” and “look at that bird”; in a real-life scenario,
each of these short phrases would naturally be accompanied by a pointing gesture to
direct the attention of the agent toward the correct hallway, box, door, or bird. These
sample interactions likewise demonstrate some of the intents associated with pointing
gestures: to explore an area, retrieve an object, follow a specific path, or observe (in
the case of an autonomous vehicle, take a picture of) an item. With directionality de-

rived from pointing gestures being crucial in collaborative tasks, recognizing pointing
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gestures is a fundamental capability of AUVs. Further, robust gesture recognition and
directional inference is key for autonomous vehicles, since there is no explicit human-
in-the-loop control mechanism. Unlike remotely operated vehicles (ROVs), AUVs do
not inherently involve a human-in-the-loop to correct misinterpreted commands, which
makes the ability of AUVs to independently and accurately interpret commands both
mission- and safety-critical. This is of even greater importance underwater, where risks
due to error are elevated simply due to the nature of the aquatic domain. Thus we
conclude that the development of a robust algorithm for pointing gesture recognition is
a compelling research topic for advancing the collaborative capabilities of autonomous

vehicles in underwater human-robot interaction scenarios.

1.5 Contributions
This thesis provides the following contributions:

e A study focused on the modality of humans pointing to objects.

e Two fully annotated pointing datasets, one fully in the underwater domain which
contains the classes of diver and diver_pointing, and a second in the terrestrial

domain.

e An analysis of the efficacy of four state-of-the-art object detection networks in

identifying pointing gestures in the underwater domain.

The remainder of this thesis is organized as follows: Chapter 2 contains a review of
the relevant work in the areas of human-robot interaction, general and pointing gestural
communication in robotics, and gestural communication in underwater robotics. Chap-
ter 3 outlines the methodologies followed, including the human study design, annotation
and generation of the datasets, and modification of the object detection networks for
work with custom datasets. In Chapter 4, the experiments training the object detectors
with these datasets and the results of these experiments are discussed. Finally, con-
clusions and thoughts on future directions from this work are discussed in Chapter 5.

Supplementary material follows in the appendix.



Chapter 2

Related Works

2.1 Human-Robot Interaction

The area of Human-Robot Interaction (HRI) is a broad field, with different aspects of
research focusing on perception [29], motion planning [32], understanding human-robot
trust [33], and developing human-robot collaborative protocols [34]. Since our work
specifically focuses on robotic perception of gestures as a human-robot communication
modality, we review the related work in the areas of terrestrial and underwater robotic

gesture recognition in more detail.

2.2 Gestural-Based HRI

Gestures in Robotics

Both full-body gestures as well as hand gestures have been robustly investigated in
robotic control, with various algorithms underpinning the gestural recognition. Early
work in this area utilized parametric Hidden Markov models (HMMs), which had the
advantage of being temporally invariant [35]. Extending this idea, Nickel et al. track a
person’s face and hands, and use a trained HMM to recognize when a pointing gesture
occurs [36]. After recognizing the gesture, the authors further infer the pointing direction
in three ways: utilizing a line from head to hand, extending the forearm, and estimating
head orientation. The whole-body nature of gestural communication is evidenced by the

work of Couture et al., who do not restrict gestures to the arms and hands, but rather
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introduce a methodology for commanding individual robots from a multi-robot system
by first selecting a robot through a gaze and subsequently assigning it a task with an
arm gesture [30]. Specifically focusing on humanoid robots for human assistants, the
authors of [29] recognize two classes of gestures, static and dynamic, creating a multi-
robot system capable of recognizing a hand wave, pointing gesture, head shake, and nod.
By extracting the skeletal joint features of a person, they split their approach to use
Dynamic Time Warping (DTW) [31] for dynamic gesture recognition, while analyzing
the geometrical pose of the joints over a time series of frames to identify a static point.
These implementations demonstrate a portion of the wide array of gestural systems for
robotic control.

With the extensive work investigating gestures for robotic control, numerous datasets
have been released to support advancement of such gestural recognition systems. How-
ever, among these datasets, a focus on pointing gestures is notably absent. Creating a
multimedia dataset for human-robot interaction including both audio and visual data
from a Kinect sensor system, the authors of [37] address a pointing-relevant intent, i.e.,
a gesture to “go somewhere,” yet don’t explicitly assign a gesture for pointing. Likewise,
the ChaLearn Looking at People project [38] has created multiple datasets for human
pose estimation and gesture recognition, but none specifically analyzing pointing ges-
tures. Similarly, a pointing gesture is notably missing from both the 29-class Praxis
upper body dataset [39] and the DVS128 Gesture dataset of 11 hand gestures released
by IBM Research [40]. While conducting a broader survey of datasets for human gesture
recognition which focused on hand and arm movement, the authors of [41] observe that
in general, datasets primarily focus on vocabularies of learned gestures such as sign lan-
guage [42], military gestures [43], or cultural signs [44]. In contrast, the datasets in this
work have been created specifically to support recognition of the natural, universally

understood pointing gesture.

Pointing Gestures in Robotics

The task of identifying pointing gestures has been widely explored in terrestrial robotics,
with algorithms varying from a focus on hand pose to a full body approach, utilizing

either stereo or monocular camera input. Beginning with hand pose algorithms, Fujita
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et al. focus specifically on identifying the pose of a hand pointing toward a forward-
facing camera [45]. To do so, they utilize two cameras with parallel optical axes placed
several meters from the hand and process the pair of images using a Random Regres-
sion Forest with stereo techniques. They further extend accuracy by utilizing Bayesian
techniques over sequential frames. Also focusing on the hand position, the authors of
[46] instead employ a probabilistic approach to estimating pointing gestures, which is
notably independently of body pose. Shifting focus to algorithms leveraging full-body
pose, [47] utilizes a Kinect sensor to identify the 3D skeletal joint mapping of the human
instructing the robot. Making the simplifying assumption that the raised arm is per-
forming a pointing gesture, they use only the hand and shoulder coordinates to extract
the pointing vector direction, subsequently performing a 3D to 2D mapping so that
the robot can interpret the 3D pointing gesture as a cardinal direction. Also inferring
the pointing gesture from a 3D skeleton (Figure obtained from a Kinect sensor, the
authors in [48] further present a method of calibrating their pointing gesture recognition
algorithm with horizontal and vertical offsets to compensate for users’ natural variation
in pointing gestures. Taking these algorithms a step further, [49] and [50] extend the
pointing direction as a vector emanating from the elbow coordinates through the wrist
coordinates. They subsequently identify the robotic navigation destination as the in-
tersection of this vector with the floor plane. Each of these approaches inherently uses
depth information in conjunction with stereo cameras.

Additional work in identifying pointing gestures using monocular cameras has also
found success, frequently paired with a machine learning algorithm. In [51] and [52]
the authors use semantic segmentation to identify a human, and the gesture recognition
problem is solved by training a support vector machine (SVM) classifier. Also using
a monocular camera, [53] tracks both the hands and the face, recognizing a pointing
gesture based on finger pose and subsequently estimating the object being pointed
toward through both the face and hand orientation. In the context of a “robot service
companion,” Richarz et al. develop an algorithm for pointing gesture recognition using
monocular cameras, limiting the interaction space to 2 meters between human and robot
[54]. They define the pointing gesture rigidly as an extended arm, with the head and
gaze aligned in the intended pointing direction, and utilize a hierarchical neural classifier

based on multi-layer perceptrons (MLPs) to estimate the radius and angle defining the
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target location. This work is extended upon in [55]. With such a large body of work

dedicated to pointing gestures in the terrestrial domain, the groundwork has been laid

for developing such algorithms in the underwater domain.

Figure 2.1: Example skeletal joint mapping.

2.3 Gestural Communication in Underwater Robotics

While the pointing gesture recognition and inference problem has been widely inves-
tigated in terrestrial robotics using machine vision, it has yet to be addressed in the
underwater domain. Thus the related work in the underwater domain primarily focuses
on the more general problem of identifying gestures made by divers. Early work in this
domain by Dudek et al. utilized fiducial markers, with a gesture consisting of a diver
displaying a single marker [56]. With a meaning mapped to each fiducial marker cre-
ated using the ARTag toolkit [57], sequences of gestures made with the tag compose a
language, called RoboChat. The authors extend this schema in [4] to create RoboChat
gestures, a language involving only two fiducial markers, where the relative motion, i.e.,
physical gesture performed with the two markers, defines a command (Figure. With

one marker serving as a reference point, the point cloud extracted from the motion of
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the second marker is compared to the shape of a known gesture using an Iterative Clos-

est Point (ICP) algorithm [58]. This early work in the underwater gesture recognition

laid the foundation for future development.

Figure 2.2: Demonstration of RoboChat Gestures from [4]. Image courtesy of the McGill
Mobile Robotics Lab.

More recent work in underwater gesture recognition focuses on recognizing gestures
without supplementary vision aids like markers. The Cognitive Autonomous Diving
Buddy (CADDY) project investigated the development of a gesture-based language for
controlling an AUV [59], which was initially implemented using a Haar Cascade clas-
sifier to identify gesture candidates, with validation and classification performed by
MultiDescriptor Random Forests [60]. A broader gestural recognition system imple-

mentation is demonstrated in [61], based on the CADDIAN gestural language, which
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is described in detail in [62] and [I7]; however, in these works the gesture recognition
system backend is not discussed. Beyond the CADDY project, numerous other groups
are investigating gesture recognition. Islam et al. designed a gestural control interface
for the AQUA robot [I] where specific gestures are mapped to token commands, with
sequences of these commands being interpretable by the robot as instructions. In this
work, the gestural recognition system is implemented using a deep approach combining
a region proposal network (RPN), based on contour qualities such as the convex hull,
with a convolutional neural network (CNN) to perform the gesture classification task
[5]. Also using deep learning, Mital et al. seek to classify diver hand signals [9], begin-
ning with images of a hand only (eliminating the need for a region proposal network).
They focus on extracting eight Hu moment parameters from a background-subtracted
image, ultimately feeding these eight parameters into an artificial neural network for
classification [63]. Diverging from the deep approaches, the authors of “Development of
an Underwater Hand Gesture Recognition System” take a more fundamental computer
vision approach, preprocessing the image to obtain a segmentation of the diver’s hand,
defining a wrist line by fitting circles to the hand and palm regions, and extracting the
actual hand pose after rotating and cropping the image. The gesture, i.e., the specific
hand pose, was extracted using two methods, one using a convex hull, and the second

with finger segmentation [64].

(a) (b)

Figure 2.3: Examples of the token gestures implemented in [5].

Other work in the area of underwater gesture recognition diverge from the use of
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traditional vision methods for gesture recognition. Building off the work started by the
CADDY project, the “Advancing Diver-Robot Interaction Capabilities” (ADRIATIC)
project utilizes a diving glove with motion and tensile sensors to capture inertial move-
ment which is used to detect and classify gestures [65]. More closely related to the vision
approaches previously discussed, the CADDY project also investigated using high reso-
lution multibeam sonars, also referred to as acoustic cameras, to perform hand gesture
recognition using three methods: a convex hull approach, a support vector machine
method, and finally a novel algorithm combining both a convex hull and a SVM [66].

Among the underwater gesture recognition protocols discussed here, the majority
require a close proximity of the diver to the AUV, with the gestural languages mostly
concerned with the hand pose. Further, none focus specifically on pointing gestures.
These two observations reveal the unique standing of this work among the current

literature: recognition of pointing gestures through utilizing a full-body diver pose.



Chapter 3

Methodology

Since we have chosen to use a deep learning approach to developing a pointing gestural
recognition system for underwater HRI, a key aspect of this work was developing a large
dataset necessary for training deep neural networks. Due to the majority of this work
being completed during the ongoing novel Coronavirus (COVID-19) pandemic, data
collection opportunities were limited due to suspension of our research laboratory’s in-
person collaborative activities. Specifically, prior to the pandemic we performed pool
trials one to two times a month during the academic year, collecting data and testing our
algorithms during development. In the summer months, this frequency increased, with
our lab taking advantage of the warmer temperatures to collect data in the field, testing
our algorithms in Minnesota lakes. A yearly trip to Barbados afforded further validation
during ocean trials. These data collection and verification opportunities were all placed
on hold during the pandemic. Thus we relied upon collected data from previous trials
and also designed a study to collect data of participants performing pointing gestures,
which was submitted to the University of Minnesota’s Institutional Review Board (IRB)
for approval due to the involvement of human participants. With the study approved
and data obtained, we both developed and executed a labeling scheme to annotate this
data for use in training object detection networks to solve the pointing gesture problem.
Once the dataset was prepared, it was used to train four different state-of-the-art object
detection networks for comparison of their efficacy in pointing gesture recognition in the

underwater domain. The sections below expand on each of these facets of this research.

15
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3.1 Human Study

Study Design

Thousands of images are necessary to train deep models, and since no publicly available
dataset specific to pointing gestures exists, we designed a human study to develop such
a dataset and understand better how people point. Since our goal is to create a natural
interaction between human and robot, we designed tasks that would encourage natural
movements, while constraining the form of the pointing gesture to specific hand positions
to define reproducible (and thus machine learnable) representations. Defining the hand
positions classified as “pointing” also permits the correlation of intent to the modality
of pointing, an area of investigation beyond the scope of this thesis’ contribution, but
currently under investigation by our collaborator Luoyao Chen. Lastly, the recording
setting is specified to help support domain-independent representation learning in the
deep networks.

With the pointing gesture being a ubiquitous motion with variation around the
world, we deliberately decided to specify the hand positions for our participants to
assume when making a pointing gesture. The motivation for this specification was
two-fold: to standardize what is considered a pointing gesture for our algorithm, and to
facilitate a more robust communication methodology between human and robot through
inferring diver intent from the form of the pointing gesture used. Accordingly, four
different classes of pointing gestures were defined, shown in Figure |3.1] Each of these
four classes are a variation on the traditional pointing gesture. The first, with all fingers
extended and held together with the palm facing outward was designated for the intent
of “go somewhere” (Figure (a)). The second, with the index finger and thumb
extended in parallel was designed to indicate a “pick up” command (Figure (b)).
The third and fourth pointing gestures both have the index finger extended; however
the former extends the thumb upwards at a right angle to the index finger to indicate
“take a picture” (Figure (c)), while the latter folds the thumb over the remaining
curled digits, forming the classic index finger point (Figure (d)). In the study we
provided reference images of these classes of gestures, with the clarification that they
may be made in any orientation, and also featured two demonstration videos. This

provided a baseline expectation for the valid pointing gestures in our research study.



(c) (d)

Figure 3.1: Sample hand positions for each of the gestures included in our study, (a) go
somewhere, (b) pick up, (c) take a picture, and (d) general pointing. Images courtesy

of Luoyao Chen.

In addition to defining the hand positions for the pointing gestures, we designed
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the research study around specific sets of activities. By giving participants an activity
during which to perform the gestures, we hoped to encourage natural pointing gestures
by incorporating them into familiar tasks and by diverting participants’ focus from
the camera to the actions being performed. Sample activities for the “go somewhere”
gesture included directing people to go to a location during a tour, and telling a pet
to go outside. Similarly, we suggested that the “pick up” gesture be performed in a
scenario where the volunteer is cooking or making a craft with an assistant who brings
the necessary utensils. Since it is more easily incorporated into general activities, we
simply suggested that our participants use the “take a picture” gesture when pointing to
an object. Lastly, to encourage exploration in different pointing scenarios, we defined
pantomiming a weather report and “any other activity that involves making natural
pointing gestures” as valid activities for the video submissions. These sets of activities
were designed to guide participants to make natural pointing gestures in the specified
hand positions.

Lastly, we placed some constraints the participants’ video settings. To ensure that
most of the participants’ frame is in the field of view of the camera, we requested that
our participants place themselves a moderate distance from the camera, approximately
two meters. In addition, we suggested uncluttered backgrounds, to help prevent our
deep networks from learning features from the scene surrounding the person pointing.
Further, we requested that the videos not utilize any filters or color-correction, aiming
for natural lighting and undistorted representations. Finally, we requested that the
videos not contain geo-location data or audio, to help protect our participants’ privacy.
These video settings were imposed to support the research purpose of studying natural

gestures as would be captured by a robotic perception system.

IRB Human Studies Regulatory Review Process

Since our research study involves humans participants, it is subject to review by the
Institutional Review Board (IRB) of the University of Minnesota, which is an advisory
board overseeing compliance with Federal regulation and University ethical policy. Fed-
eral regulation of human studies is grounded in principles identified by the National
Commission for the Protection of Human Subjects of Biomedical and Behavioral Re-

search, which was created in 1974 to identify fundamental ethical principles to guide
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human studies. The Commission published its findings in the Belmont Report [67] in
1976, presenting three overarching principles: Respect for Persons, Beneficence, and
Justice. Federal regulation centers around these three ethical pillars. In addition to
ensuring compliance with Federal regulations, the IRB also ensures that human studies
follow the guidelines set in place by the University. Designing our study around these
principles, we accordingly submitted our research study proposal to the IRB for review.

Making an initial research study proposal to the IRB required extensive planning
and documentation of our intended study operational procedures. Central to this was
completing a standard document, HRP-580 Social Template Protocol (Appendix .
In this protocol the principal and student investigators are identified, along with the
objective, significance, end goals, and procedures of the study, as described above. To
help protect the privacy of the participants, data management practices, specifically
data anonymization, storage handling, and access restrictions are also outlined in the
protocol. Further documentation includes the study duration, included populations
(to ensure protection of vulnerable groups), participant withdrawal procedures, and
potential risks to participants, all designed to ensure participants’ physical, mental,
and emotional safety. Likewise, study confidentiality and compensation proposals are
prepared and reviewed within this document. Central to the IRB submission, this
protocol dictates the study standard operating procedures (SOP).

In addition to the study protocol, the initial IRB proposal requires submission of any
supplementary materials relevant to the study. For our study, this included a volunteer
consent form and the recruitment promotional materials. Similar to the Social Template
Protocol, the consent form is a standard document, HRP-582 Social Behavioral Con-
sent Form (Appendix . Within this document, an outline of the study goal and the
participants’ role in the study is presented in a non-technical manner. Specifically, the
motivation of the research study, its duration and scope, the risks involved with partic-
ipation, volunteer responsibilities, compensation details, post-study data banking, and
withdrawal processes are presented prior to requesting participants’ written consent to
participate in the study. Beyond this consent form, the data collection form (Appendix
, as well as the promotional materials for the study (including the content for a web
landing page, social media promotional posts, and a distribution flyer) are all submitted
as supplementary materials (Appendix .
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A final component of the initial IRB study proposal involved each of the investigators
listed completing training relevant to ethics and conducting research involving human
participants. The two required courses, Research Involving Human Subjects (RCR) and
Social / Behavior or Humanist Research Investigators and Key Personnel, familiarize
the researcher with the Belmont Report [67] and its core principles, as well as additional
ethical considerations and approaches for conducting research involving humans. We
take these principles seriously, and in adherance to the protocols set in place for our
research study, the data collected remains internal to the IRV Lab. Thus the sample
images here are not from our study, but have been created for demonstration purposes.
After the initial IRB review, our study was determined to be exempt from IRB
review (Appendix . This means that while we continue to adhere to the operating
procedures outlined in the Social Template Protocol, the Consent Form is no longer
necessary and has been replaced with an Information Form (Appendix . Once we
obtained final approval (Appendix from the IRB, we began our study, which lasted
from February through May 2021. Summary statistics from this study may be seen in

Table [3.1]

Statistic Value
Number of Participants 31
Number of Video Submissions 39
Seconds of Video 1960
Minutes of Video 32.6

Approximate Number of Frames 58,800

Table 3.1: General Statistics on the Study Data Collected.

3.2 Dataset Preparation

Data Sources

The datasets utilized for training and evaluating the models in this work consisted of
series of frames extracted from video clips. There were three main sources for these

videos: past Interactive Robotic and Vision Lab (IRV Lab) pool and field trials, public
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domain footage from the National Park Service’s B-Roll archive [68], and volunteer
submissions to the research study described in The primary data used for training
the networks consisted of pool trial data: video of divers collected underwater using
monocular GoPRO cameras [69] and the AQUA robot’s stereo cameras [I]. The last

two data sources were video taken in terrestrial settings.

Labeling Policy

With initial data collected, the next step is to annotate the data. In deep learning, the
nature of the algorithm being developed informs the annotation approach. Since we are
interested in the twofold problem of localizing a diver within a frame and also identifying
the gesture being performed by that diver, our algorithms fall into the class of networks
known as object detectors. Training an end-to-end object detection framework requires
supervised learning, and therefore our annotated dataset consists of frames with object
instances labeled using bounding boxes. Prior to beginning this labeling task we defined
annotation rules, which we built into an overall labeling policy to guide and standardize
the annotation process. The labeling policy for the pool trial data (described in section
served as a baseline policy, and this policy was extended for the study data.

The baseline labeling policy for these datasets addressed two main questions: what
should be labeled in each frame, and how do we differentiate between the two classes,
pointing and non-pointing. Our first set of annotation rules governs the first question,
“what should be labeled in the video frames?” For the baseline policy we decided to
restrict our annotations to drawing bounding boxes around three classes of objects: a
diver, a diver_pointing, and (if applicable) the object_indicated (by the diver_pointing).
Any other objects in the frame are extraneous to the gesture recognition we seek to
learn, so will not be annotated in the dataset. Within these classes, each instance of
these three classes is labeled unless the class instance becomes fully occluded in a frame
(for example, a diver passing behind a coral reef which completely obscures them from
view). Secondarily, we draw a bounding box around the entire diver (whether in the
diver or diver_pointing class), additionally encompassing their dive gear if applicable. If
the diver is partially occluded or only partly within the video frame, the diver is labeled
if the majority of their body is visible; in this case the bounding box should encompass

the entire diver, including occluded limbs or as much of the diver as is within the frame.
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These annotation rules address the first question of what we label in our dataset.

A second set of annotation rules define our process for how to differentiate between
the two classes of diver, a diver and a diver_pointing. Since the action of making a
pointing gesture is a fluid motion, it can be challenging and subjective to determine at
which frames a pointing gesture begins and ends. We decided to define the labeling
of a pointing gesture based on two items: hand position and arm rigidity. To be
classified as a frame with a diver_pointing, the diver’s hand must be in one of two
positions: the traditional point, with index finger extended (Figure [3.1(d)), or the full-
hand indication, with all five fingers together and pointing in a single direction (Figure
3.1{(a)). In addition, the diver’s arm must be either fully extended or held rigidly in
the pointing gesture (in an either extended or non-extended state). To clarify uncertain
cases, a labeling decision tree was created, as shown in Figure (3.2l These two annotation
rules together define whether a diver detected in a video frame is classified as a diver
or diver_pointing. These are the rules of our baseline labeling policy. Sample labeled

images may be found in Figure [3.3
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Yes Is the Diver's hand pointing? No

Maybe

Is the arm outstretched in
a direction along with the finger?
(i.e. does the overall gesture
indicate a point?)

Yes

Figure 3.2: Decision tree for baseline labeling policy.

The baseline labeling policy was applied to both the pool trial data and the public
domain videos; however, an extended labeling policy was used for the data from the
study described in For this dataset, we retain the diver, diver_pointing, and
object_indicated labels, despite the study data being terrestrial. The rules to determine

whether to label a person as diver or diver_pointing can be summarized as follows:

e A person who is not pointing is labeled diver



(c) (d)

Figure 3.3: Sample labeled images from our dataset.

e A person who is pointing will be labeled diver_pointing

e In addition to the two pointing gestures defined in the baseline labeling policy,
consider all four hand positions in Figure [3.I] as a pointing gestures, requiring the

overall bounding box for the person to be diver_pointing

e In cases of uncertain hand position, follow the decision tree (Figure from the

baseline labeling policy) to determine whether to label as diver or diver_pointing

This labeling policy extends the baseline labeling policy by requiring up to two addi-
tional labels for any frame which is labeled as diver_pointing. Whenever a person is
labeled as diver_pointing in a frame, also label the hand that is pointing, and if appli-
cable, the object being indicated by the pointing gesture. When drawing a box around

the hand that is pointing, this box should have one of four additional labels, based on
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the hand position assumed from [3.1]: (a) go_there, (b) pick_up, (c) take_picture, and
(d) general point. Lastly, if the pointing gesture is directed toward an object that is
visible in the frame, also draw a bounding box around the entirety of the object with

the label object_indicated. A full example of this extended labeling policy is in Figure

Figure 3.4: A full example of the extended labeling policy.

Labeling Tool

To complete the labeling task, we used an open-source annotation tool hosted by the
IRV Lab called EVA [70]. EVA is specifically designed to aid in creating annotations for
object detection, providing a framework for drawing bounding boxes with class labels
on the frames extracted from uploaded video clips or image sequences. To set up a
labeling job within EVA, we first define the class labels, then create a project, to which
the relevant class labels are added, assigning a number to each class in the process. Next
we upload our videos or frame sequences to the project in EVA, where they are separated
into 100-frame segments. We then draw a bounding box around each object in the first
frame, and invoke the tracking feature in EVA. This tracking feature automatically
predicts the bounding box for each object in the subsequent frames, which can then

be adjusted for accuracy. This greatly speeds up the labeling process, and when an
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entire video has been labeled, the annotations can be exported from EVA in YOLO or
PASCAL VOC format via a simple download. The EVA Labeling interface is shown in

Figure 3.5

m Previous 064 Next [UEWCESid WS O object indicated v LA ET L) Help ~ Save

Figure 3.5: EVA Labeling tool interface. Image courtesy of Luoyao Chen.

Dataset Generation

After the labeling was completed with EVA, the annotations were reviewed a second
time as a proofing step prior to exporting both the frames and annotations from EVA.
This proofing step is crucial, because during this step we ensure both that all the class
labels adhere to the labeling policy and that every frame is labeled, two points critical
to success in supervised learning. After the data export, the dataset is cleaned, with
two classes of frames removed: out of domain frames and blurry frames. Specifically,
out of domain frames refer to pool trial data where the camera is above water, or frames
where there is no diver present. Blurry frames are selectively removed from the dataset,
dependent on the level of blur and the class label of the annotations in the frame. For
frames labeled diver_pointing, the frame is removed if the level of blur is high enough
that the pointing gesture, specifically the hand, is indiscernible. For all other frames,
the frame is removed only if the level of blur makes it unfeasible to discern the general

features of a diver. Once the dataset has been cleaned in this manner, the data is split
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into training, validation, and testing sets.

For this work we created several versions of our pool trial dataset, each following the
standard 70% - 10% - 20% training, validation, and test split. Originally we split each
video in the dataset temporally, with the first 70% of the frames for training, the next
10% for validation, and the last 20% for test. However, this yielded a highly imbalanced
dataset where the training and validation sets had diver_pointing class instance rates in
the 30th percentile, while the training set only contained a proportion of diver_pointing
in the tenth percentile. To resolve this, two additional dataset splits were generated,
as demonstrated in Figure [3.6] The dataset statistics for the first and second splits are
summarized in Tables and[3.3] Dataset 1 has a rate of the diver_pointing class above
30% for each set: training, validation, and test. Dataset 2 has a slightly lower rate of

the diver_pointing class, with a 27.5% occurrence rate.

Train
Val
Original | Test
Split
Data |
Split 1
Data |
Split 2
0 20 40 60 80 100

Percentage

Figure 3.6: Training, validation, and testing dataset split.
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Split # Frames diver diver_pointing % diver % diver_pointing

train 7899 6076 3258 65.1% 34.9%
val 1131 802 504 61.4% 38.6%
test 2258 1869 851 68.7% 31.3%

total 11288 8747 4613 65.5% 34.5%

Table 3.2: Dataset statistics for Data Split 1.

Split # Frames diver diver_pointing % diver % diver_pointing

train 7890 5948 3395 63.7% 36.3%
val 1131 902 497 64.5% 35.5%
test 2267 1897 721 72.5% 27.5%

total 11288 8747 4613 65.5% 34.5%

Table 3.3: Dataset statistics for Data Split 2.

3.3 Deep Learning Algorithms for Pointing Gesture Recog-
nition

To analyze the efficacy of Deep Learning for gesture recognition in the underwater
domain, four state-of-the-art (SOTA) object detection networks were trained using the
pool trial dataset discussed in These include SSD [71] , YOLOv3 [72], YOLOv5
[73], and Faster R-CNN [74], which are each subsequently discussed in more detail.

SSD

The first network we implemented was a Single-Shot Detector (SSD), introduced by Liu
et al. in [71]. As the name suggests, SSD is a single-stage detector, which identifies
regions of interest and bounding boxes for detections simultaneously. We chose to
implement a Pytorch-based version of SSD, available on Github [75]. This model uses
VGG-16 [76] as the feature extraction backbone to the network, and offered built-in
support for datasets in the PASCAL-VOC format. Thus, after setting up our dataset

in the required format, SSD was implemented with no major modifications beyond
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adjustment of the model learning rate.
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Figure 3.7: SSD Architecture. CONYV represents a convolutional layer while FC repre-

sents a fully-connected layer. Image courtesy of [6] .

Faster R-CNN

For our second object detection network we shifted focus to the SOTA multi-stage
detectors, which first identify regions of interest with associated objective scores, then
output final bounding box predictions in a second stage. Currently Faster R-CNN is
the state of the art in the family of Region Convolutional Neural Networks (R-CNNs)
[74]. Today, Faster R-CNN serves as the backbone for numerous deep learning projects,
such as Facebook AI’s detectron2 [77], which served as the basis for our implementation
of Faster R-CNN.

Implementing Faster R-CNN from the codebase established by detectron2 required
two main steps, registration of the dataset and writing custom training and testing
scripts. Registration of the dataset has two steps: writing a dataset function which re-
turns the dataset in a standard form compatible with detectron2’s existing dataloaders.
After the dataset function is written, the dataset is “registered” by entering the name of
the dataset along with the dataset function into detectron2’s DatasetCatalog. After the

dataset name and function have been registered, we provided some optional metadata
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information, namely the object classes in our dataset, “diver” and “diver_pointing.”
With the dataset registration complete, the detectron2 codebase is now able to access
our custom dataset during training.

The next step in implementing Faster R-CNN involved writing a custom training
and evaluation script. This was modified from detectron2’s base code and involved writ-
ing functions for loading the model configuration, training using this configuration, and
running inference on the validation and test sets. The model configuration function is
run every time the script is called and includes specification of the base model configu-
ration file, the training dataset, initial model weights, and training parameters such as
the batch size, learning rate, number of iterations in an epoch, and number of classes.
After the configuration function, the next main function is the core training function,
which takes two optional parameters of number of epochs and a resume training flag.
This function will then train on the dataset with the established configuration settings,
for the specified number of epochs, which defaults to 1. If the resume flag is set to True,
training will resume from the default model save checkpoint; if this does not exist, it
will begin training from the base checkpoint specified in the configuration. Lastly, two
functions were written to run inference: one for the validation set and another for the
test set. Each of these functions load the most recently saved checkpoint of the model
and run inference on the validation or test set, respectively, saving the output to ap-
propriately named directories. This summarizes the training and evaluation script. By
calling this script with the appropriate flags, we can perform any combination of the
following tasks: train from the baseline model, resume training from a checkpoint, run

validation on the most recent checkpoint, or run test on the most recent checkpoint.
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Figure 3.8: Faster R-CNN architecture. ConvNet represents the base feature extractor,
while FCs are the fully connected layers. Rol stands for Region of Interest. Image

courtesy of [6] .

YOLOv3

YOLOv3 (You Only Look Once) is a SOTA object detection network designed specif-
ically for real-time applications [72]. The YOLO family of networks is uniquely posi-
tioned among other object detectors in that it skips the region proposal step and instead
makes predictions based on a grid of cells. This modification greatly enhances the speed
of the network, with the tradeoff being an increased potential for missed detections. For
our implementation, we again train YOLOv3 on our custom dataset, utilizing a pytorch
implementation created by Ultralytics [78]. This implementation contained native sup-
port for training custom datasets, so model implementation consisted of setting up
our dataset in the format required, and writing a YAML configuration file specifying

the paths to the training, validation, and test sets, as well as identifying the number
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of classes and the class names. This step was equivalent to the dataset registration
performed for the Faster R-CNN network, with a simplified interface. Once the config-
uration file was created, it was specified in the built-in training and testing scripts to

perform the experiments.
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Figure 3.9: YOLOv3 Architecture, Image courtesy of [6] .

YOLOvVS5

The final implemented network, YOLOvVS, is a recently released model which builds
upon the YOLO family of networks. Although the maintainers have yet to publish any
work on [73], we include it here for comparison as a recent release among the SOTA
networks. Also created by Ultralytics, this implementation closely resembles YOLOv3
in structure, thus the details of the implementation setup are equivalent to what is

discussed above.



Chapter 4

Experiments

4.1 Pointing Gesture Recognition Experiments

Network Training

When training deep networks based on SOTA models, it is beneficial to begin training
with a baseline set of weights from a pretrained model. In this way we can benefit from
the general features already learned from the model, training with our new dataset
until the model converges. Each of the object detection networks described in was
trained from a baseline model checkpoint, with the details summarized in Table
Further details regarding these design choices and the training parameters follow.
SSD. The first model we trained is the Single-Shot Detector (SSD) as implemented
by [75]. This model came with a pretrained checkpoint for the base VGG-16 feature

Model Feature Extraction Baseline Model
Backbone Checkpoint
SSD VGG-16 vggl6_reducedfc.pth
Faster R-CNN ResNet-50 faster_rcnn_R_50_C4 _3x.yaml
YOLOv3 N/A yolov3.pt
YOLOv5 N/A yolovhx.pt

Table 4.1: Model Feature Extraction Backbones and Baseline Training Checkpoints.

33
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extraction backbone, and from this we trained for 15 epochs with a batch size of 32 and
a learning rate of le—4, with otherwise default parameters. We observed that the model
appeared to converge after 10 epochs as demonstrated in Figure (d), and based on
the model performance, subsequently discussed, we chose the weights after 10 epochs

as our final model.

Faster R-CNN. For Faster R-CNN, we chose a baseline model from detectron2’s
model zoo [77]. Specifically, we chose a model based on the ResNet-50 feature extraction
backbone, with a conv4 backbone and convb head, which was the original baseline for
the Faster R-CNN paper [74]. The particular checkpoint was pre-trained on the COCO
dataset [79] utilizing a 3x schedule, which corresponds to approximately 37 epochs of
training on the Microsoft Common Objects in Context (COCO) dataset [79]. From this
baseline, we trained for 15 epochs (approximately 59k iterations) using a batch size of 2
and a learning rate of 2.5e—4. As shown in Figure[4.1[(d), the training converged around
10 epochs, which we took to be our final model to avoid overfitting. Comparison of the
metrics discussed below supported this choice, as the average precision (AP) metrics

decreased from 10 to 15 epochs.

YOLOvV3. The YOLO family of networks contains models of various size, including
“tiny” models which slim down the number of parameters in favor of inference speed,
while sacrificing model accuracy, and larger models which increase the model parameters
for higher accuracy at the cost of inference speed. For an even comparison across
implementations, we chose the standard YOLOv3 model, with a checkpoint which was
trained to 300 epochs on the COCO dataset. From this checkpoint, we trained on our
own datasets for 60 epochs, with an image size of 416 and a batch size of 16. All of the
other training parameters were set to the network defaults. With this configuration, we
found that the training loss converged after 40 epochs, as demonstrated in Figure (a).
The best checkpoints from training up until 40 epochs and up until 60 epochs were
compared for verification, and ultimately we found that the network had generalized

better after 40 epochs, suffering from over-fitting past this point.

YOLOvV5. The new release of YOLOv5 has a slightly different set of model config-
urations than YOLOv3. For our baseline we chose the YOLOv5x model, whose check-

point which achieves the best performance in terms of AP metrics while staying under
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100 million parameters. This specific model has 87.7 million parameters in comparison
to YOLOv3’s 61.9 parameters, and seemed to be the most comparable baseline network
in terms of performance and size. The checkpoint we trained from was also trained to
300 epochs on the COCO dataset, providing an even comparison with YOLOv3. For
training with our custom dataset, we again used the same parameters as in YOLOv3:
training for 60 epochs with an image size of 416 and a batch size of 16, with defaults
otherwise. Very similarly to YOLOv3, we found that our network converged after 40

epochs, and we took our final model to be the best checkpoint from the initial 40 epochs.

Network Performance Comparison
Metrics

Here we present three key metrics to analyze the performance of our object detection
networks in recognizing pointing gestures: Frames per Second (FPS), Intersection over
Union (IOU) and Average Precision (AP).

FPS. Frames per second (FPS) is the standard metric for measuring detection
speed of an object detector, and refers to the number of frames the network can make
predictions for each second, i.e., the number of forward passes the network can make
in one second [6]. As shown in Table YOLOv3 has the best inference speed, at
a minimum of 129 FPS between the two datasets. YOLOv5 has a slightly different
architecture and more weights, which likely contributes to its decreased framerate at
83 FPS. Since the YOLO family of object detection networks were build specifically for
real-time inference and eliminate the region proposal step altogether, their speed comes
as no surprise. After the YOLO detectors, SSD comes in next, with a drop in inference
speed to 38 FPS, roughly half of the speed of YOLOv5. This is to be expected, with
the VGG-16 feature extraction adding additional overhead in this single-shot detector.
Despite the speed drop in comparison to YOLOvS, this is still fast enough for real-
time inference on board an AUV. Lastly, Faster R-CNN sees another significant drop
in inference speed, down to 5 FPS due to the multi-stage architecture. Dropping below
15 FPS, this is no longer considered real-time; however, this is still fast enough to be
used on board an AUV.

IOU. The Intersection over Union (IOU) metric quantifies the overlap between the



36

55D Loss total_loss
20.0
tag: total_loss
17.5
014
15.0
12.5 1 012
10.0
0.1
7.5
0.08
5.0
2.5 0.06
0 500 1000 1500 2000 2500
0 Sk 10k 15k 20k 25k 30k 35k 40k
(a) (b)
box_loss cls_loss obj_loss
tag: train/box_loss tag: train/cls_loss tag: train/obj_loss
0016
0.03 6e-3
ooz
0.0z Ae-3
Be-3
0.01 403 263
a 0 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
()
box_loss cls_loss obj_loss
tag: train/box_loss tag: train/cls_loss tag: train/ob]_loss
no4 002
0.012
0.03
Be-3
Be3
0.02
4e3
0.01 Ae-3
0 0 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Figure 4.1: Training loss of each of the networks (a) SSD, (b) Faster R-CNN as imple-
mented in Detectron2, (¢) YOLOv3, and (d) YOLOv5. Loss is plotted on the y-axis and
number of epochs (YOLOv3, YOLOvV5) or number of iterations (SSD, Faster R-CNN)

is on the x-axis.
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Model inference speed FPS

SSD 26.1 ms 38.3

Data Faster R-CNN 198 ms 5.1
Split 1 Yolov3 7.6 ms 131.6
Yolovs 12.0 ms 83.3

SSD 24.9 ms 40.1

Data Faster R-CNN 208.1 ms 4.8
Split 2 Yolov3 7.7 ms 129.9
Yolov5 10.4 ms 96.2

Table 4.2: Inference speed on NVIDIA Titan Xp GPU.

original ground truth bounding box and the bounding box predicted by the object
detector. A value between zero and one, it is calculated by a dividing the area of
intersection between the ground truth bounding box and the predicted bounding box
by the area of their union. Given BBy as the ground truth and BB,,.4 as the predicted

bounding box, this can be expressed mathematically as

_ BBy N BBy
BBy UBByred

The closer the IOU value is to one, the higher the overlap between the ground truth and

10U (4.1)

predicted bounding boxes, a reflection on the spatial accuracy of the object detector. A

demonstration of this may be seen in Figure |4.2
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loU: 0.4034 loU: 0.7330 loU: 0.9264
—
—
Poor Good Excellent

Figure 4.2: Demonstration of IOU scores, Image courtesy of [6]

Beyond being a measure of the spatial accuracy of the object detector, the IOU
metric is further used to determine when a detection is considered a True Positive
(TP), i.e., a correct prediction. A threshold for the IOU value is set as a network-
tunable value, where given a class label, all detections with an IOU between the ground
truth and the detection greater than the threshold are considered True Positives, while
detections whose IOU is below the threshold are considered False Positives (FP). Missed
detections or detections with the incorrect class label are considered False Negatives
(FN).

Overall, the four networks analyzed here performed extremely well in terms of av-
erage IOU, with all of the networks achieving IOU scores above 83% (Table . This
represents more than 10% improvement over the average IOU scores achieved by SSD
and the YOLO family of networks when trained to detect divers using the VDD-C
and DDD datasets [80], although this improvement may be partially attributed to our
dataset lacking the challenging visibility conditions present in these datasets. For both
data splits, SSD has the highest IOU scores, 99.3% and 99.4% respectively, indicating
that this network has effectively localized our detections. The YOLO family of net-
works saw an improvement from the 83rd percentile to the 96th percentile between the
two data splits, indicating the strong potential of the network architecture to learn to
localize effectively. Faster R-CNN held to steady IOU values around 87%. These re-

sults suggest that our detectors were able to effectively learn the features of a diver and
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diver_pointing for accurate localization.
AP. Lastly, one of the key benchmark metrics for object detectors is the Average

Precision (AP). This metric is calculated from the precision and recall, which are defined
based on the True Positives (TP), False Positives (FP), and False Negatives (FN) as

TP

pT@CiS’I;OTZ = W (42)
TP

= ——F——. 4.3

T T TP EN (43)

For a set IOU threshold and a single class, the precision and recall can be computed
over a range of bounding box confidence score thresholds to create what is known as the
precision-recall curve. The average precision (AP) is then computed as the area under
this curve. This process is repeated for each class, and the mean of the average precision
values taken over all the classes defines the mean average precision (mAP). Specifically
when referring to the COCO dataset, AP is used to refer to the mAP, and we adopt this
convention in subsequent discussions here. Further, since the AP is dependent on the
10U threshold, it is conventional to specify the threshold along with the AP; thus the
mAP calculated with an IOU threshold of 0.5 is denoted APsq, while the mAP with an
10U threshold of 0.75 is denoted APr5. One final metric, associated specifically with the
COCO dataset, is an average AP over IOU thresholds. This metric, APsg.95 calculates
the APs with thresholds between 0.5 and 0.95 inclusive, with a step size of 0.05, and
computes their average.

Analyzing the AP values reveals that for both data splits, the YOLO family of ob-
ject detectors has superior performance, with YOLOvV5 being the most effective detector
for data split 1, and YOLOv3 being marginally superior for data split 2. Considering
the APso metric specifically, the models trained on data split 1 have comparable per-
formance, with a narrow range of values between 82% and 90%. Data split 2 revealed
some interesting trends in the ability of the models to learn, with SSD and Faster R-
CNN’s AP5p metrics dropping from 82% to 65.9%, and 87.1% to 80.9% respectively,
while YOLOv3 and YOLOv5 both increased to an APsg of 99.7%. We attribute the
increase in the YOLO models’ performance to their increased recall. Looking at Table

the number of frames containing a diver or diver_pointing instance which had no
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diver diver_pointing Both Classes

Model AP 50.95 AP 50.95 APso AP75 AP50.95 10U

Dats SSD 0.446 0.542 0.821  0.568 0.494 0.993
Split Faster 0.598 0.735 0.871 0.738 0.666 0.870
. R-CNN
Yolov3 0.769 0.782 0.876 - 0.775 0.833
Yolovh 0.775 0.845 0.9 - 0.81 0.837
. SSD 0.486 0.353 0.659  0.506 0.420 0.994
Split Faster 0.669 0.587 0.809  0.696 0.628 0.890
R-CNN
: Yolov3 0.998 0.996 0.997 - 0.997 0.968
Yolovh 0.997 0.996 0.997 - 0.997 0.968

Table 4.3: Summary of AP and IOU Metrics across the two data splits and four object

detectors.

corresponding prediction dropped from a rate of close to 8% on the first data split, down
to a rate of 0.5%. These frames with no predictions (i.e., missed detections) are counted
as false negatives, so this decrease contributes significantly to improved recall. Consid-
ering the APsg.95 metric across both data splits, YOLO remains strong, with averaging
over increasing IOU thresholds not diminishing model performance significantly.
Finally, we performed a more qualitative analysis of some of the classification failure
modes. Several of the misclassifications for data split 1 with YOLOv3 may be seen in
Figures and Figure [4.3] shows four frames where the ground truth prediction
was diver, but the network prediction was diver_pointing. One commonality which is
demonstrated in Figures[4.3aland [4.3D]is the outstretched arm, which appears to indicate
that the network has learned to correlate an extended arm to a pointing gesture, which
aligns with one of the rules in our labeling policy. Further, both Figure [4.3b| and
have the index finger partially extended from the rest of the hand and appear to
be frames just prior to a sequence of pointing gestures, supporting the idea that our
network has learned a representation of a pointing hand pose and associated that with

the label diver_pointing. In Figure we consider the frames with a ground truth
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Missed Detections Rate
Model diver diver_pointing total all classes

SSD 0 0 0 0%

Data Faster R-CNN 59 0 59 2.2%
Split 1 Yolov3 197 22 219 8.1%
Yolov5 195 21 216 7.9%

SSD 0 0 0 0%

Data Faster R-CNN 17 0 17 0.6%
Split 2 Yolov3 3 9 12 0.5%
Yolovh 9 12 0.5%

Table 4.4: Missed detections summary by dataset and object detector.

label of diver_pointing which were misclassified as diver. In Figure the diver’s
arm is not fully extended, and further, the pointing finger is difficult to distinguish,
being a probable cause for the misclassification. Figures and demonstrate
failure modes when the divers’ hands are in the full-hand pointing pose. We surmise
that our network may not have learned a good representation for the full-hand point, or
that it has not associated this representation with the pointing class. Our last failure
mode demonstrated here is in Figure where the diver’s extended arm aligns with
the body while making a pointing gesture. This implies that the network has learned
to associate pointing gestures with an arm pose extended away from the body, thus
missing this pointing gesture. Each of these failure modes gives insight into what our
network has learned and demonstrate the challenging edge cases that future models can
be developed to more robustly handle.

After an analysis of these four object detection frameworks, we believe that YOLOv3
demonstrates the overall best performance in terms of AP, with the added advantage of
a framerate sufficiently high enough for real-time object detection. This high framerate
does compensate partially for the missed detection rate that manifested itself for one of

the data splits.
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(a) (b)
() (d)

Figure 4.3: Images with ground truth labels of “diver” which were misclassified as

“diver_pointing.”
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(a) (b)
() (d)

Figure 4.4: Images with ground truth labels of “diver_pointing” which were misclassified

as “diver.”



Chapter 5

Conclusion and Future Work

A robust, reliable perception algorithm for the recognition of pointing gestures is an im-
portant stepping stone towards effective human-robot collaboration with autonomous
underwater vehicles. Since pointing gestures provide a natural interaction interface for
divers in a demanding aquatic environment, we choose them as a fundamental communi-
cation gesture and lay the groundwork for implementing a pointing gesture recognition
algorithm. In contrast to the abundance of work in identifying pointing gestures in the
terrestrial domain, we present here the first work exploring pointing gesture recognition
underwater.

While focusing on pointing gestures for underwater robotics, we perform a human
study to investigate the various ways in which individuals perform our four proposed
sub-classes of pointing gestures in a terrestrial environment, with the intent of gathering
sufficient data to train a model to both identify these as pointing gestures, and ultimately
differentiate between them. This model would then serve as a baseline pretrained model
which could be adapted to the underwater environment once domain data has been
collected.

Further, we contribute two annotated datasets for pointing gestures, one in the
aquatic and a second in the terrestrial domain, focused on the identification of pointing
gestures from still frames, and annotated for training object detectors. The first dataset
was subsequently used to train four state-of-the-art object detectors, to compare their

efficacy for detecting pointing gestures based on a single frame.

44
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Our contributions lay the groundwork for investigating pointing gestures in under-
water human-robot interaction, for the particular purpose of collaborating with au-
tonomous underwater vehicles. A natural extension of this work is the differentiation
between the four classes of pointing gestures presented in our human study, for the
purposes of deriving diver intent from gesture form; this topic is currently being in-
vestigated by a fellow member of the Interactive Robotics and Vision Lab, Luoyao
Chen. Still focusing on the pointing gesture recognition problem, further approaches
for robustly identifying a pointing gesture could be considered, such as recurrent neural
networks (RNNs) and long short-term memory (LSTM) models which take into con-
sideration a temporal sequence of frames rather than a single static frame. Beyond
identification of the pointing gestures and their intent, there is further exploration to be
done in the area of identifying the object or direction indicated by a pointing gesture.
In sparse aquatic environments, deep learning algorithms leveraging object detection
present an opportunity for inference of the object indicated by a pointing gesture; such
an algorithm could be inspired by the methodologies of Wang et al. in [81], where a
human-object interaction is learned by a deep network. A more fundamental approach
could infer the pointing gesture direction from diver pose estimation, much like the
terrestrial techniques leveraging the Kinect sensor have implemented.
This thesis presents novel work towards developing a robust algorithm for recognizing
pointing gestures underwater, and lays a framework for future research in developing
natural, effective, and intuitive human-robot interaction with autonomous underwater

vehicles.
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Appendix A

IRB Human Study Detalils

This Appendix contains supplementary materials relevant to the Human Study discussed
in First, we provide our Social Protocol document (HRP-580) and the Social-
Behavioral Consent Form (HRP-582) in §A.1| and Both of these forms were part
of our original IRB submission. Next we provide our exemption determination (§A.3])
which permitted the replacement of the consent form with the Information Sheet for
Research (HRP-587) in Our final approval document is reproduced in and
the promotional materials and intake form for our study are included in and
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SOCIAL PROTOCOL (HRP-580)
PROTOCOL TITLE: Robotic Inference of Gestural Indication
VERSION DATE: January 12, 2021

ANCILLARY REVIEWS

Which ancillary reviews do | need and when do | need them?

Refer to HRP-309 for more information about these ancillary reviews.

Select yes or
no

Does your study...

Ifyes...

Impact on
IRB Review

O Yes Include Gillette resources, staff | Gillette Scientific review and Gillette
No or locations Research Administration approval is
required. Contact:
research@gillettechildrens.com
[ Yes Involve Epic, or Fairview The Fairview ancillary review will be
< No patients, staff, locations, or assigned to your study by IRB staff
?
resources: Contact: ancillaryreview@Fairview.org
] Yes Include evaluation of drugs, STOP — Complete the Medical Template
5 No devices, biologics, tobacco, or | Protocol (HRP-590)
dietary supplements or data
subject to FDA inspection?
The regulatory ancillary review will be
assigned to your study by IRB staff
Contact: medreg@umn.edu
See
https://policy.umn.edu/research/indid
e
[ Yes Require Scientific Review? Not | ONLY REQURED BIOMEDICAL
X No sure? See guidance on next RESEARCH REVIEWED BY FULL
page. COMMITTEE
[ Yes Relate to cancer patients, Complete the CPRC application
< No cancer treatments, cancer process.
:cLeenm?g/preventlon, or Contact: ccpre@umn.edu
obacco?
[ Yes Include the use of radiation? Approval
No (x-ray imaging, Complete the AURPC Human Use e t!1ese
radiopharmaceuticals, external | Application and follow instructions on commlt;ee
beam or brachytherapy) the form for submission to the AURPC s m""St €
. received
committee. X
prior to IRB
Contact: barmstro@umn.edu approval;
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SOCIAL PROTOCOL (HRP-580)
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[ Yes Use the Center for Magnetic Complete the CMRR pre-IRB ancillary
No Resonar:jce| Resgarc?h (CMRR) review These
as a study location? Contact: ande2445@umn.edu groups
[ Yes Include the use of STOP — Complete the Medical Template te:c.h e
No recombinant or synthetic Protocol (HRP-590) ellr. m:l_n
nucleic acids, toxins, or afgc:::s fon
infectious agents? P :
[ Yes Include the use of human fetal | STOP — Complete the Medical Template
No tissue, human embryos, or Protocol (HRP-590
embryonic stem cells?
If yes, HIPCO will conduct a review of this
[ Yes protocol.
No Include‘PHI or are you. Contact: privacy@umn.edu
requesting a HIPAA waiver?
[ Yes Use data from the Information | The Information Exchange ancillary Approval
No Exchange (IE)? review will be assigned to your study must be
by IRB staff received
Contact: ics@umn.edu e
approval.
[ Yes Use the Biorepository and STOP — Complete the Medical Template
No Laboratory Services to collect Protocol (HRP-590)
tissue for research? These
groups do
The BLS ancillary review will be not have a
assigned to your study by IRB staff. separate
Contact: cdrifka@umn.edu application
process but
[ Yes Have a Pl or study team The Col ancillary review will be additional
< No member with a conflict of assigned to your study by IRB staff informatio
i ?
IREEsiE Contact: becca002@umn.edu n from the
. s study team
O Yes Need to be registered on If you select “No” in ETHOS, the may be
No clinicaltrials.gov? cllmca{tr/als.gov ancillary review will required.
be assigned to your study by IRB staff
Contact: kmmccorm@umn.edu
[ Yes Require registration in If you select “No” or “I Don’t Know” in | Does not
No OnCore? ETHOS, the OnCore ancillary review affect IRB
will be assigned to your study by IRB approval.

staff

Contact: oncore@umn.edu
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PROTOCOL COVER PAGE

Protocol Title

Robotic Inference of Gestural Indication

Principal
Investigator/Faculty
Advisor

Name: Junaed Sattar

Department: Computer Science and Engineering

Telephone Number:

Email Address:

Student Investigator

Name: Andrea Walker

Current Academic Status (Student, Fellow, Resident):Student

Department: Computer Science and Engineering

Telephone Number:

Institutional Email Address:

Student Investigator

Name: Luoyao Chen

Current Academic Status (Student, Fellow, Resident):Student

Department:

Telephone Number:

Institutional Email Address:

Scientific Assessment

Choose an item.

Version
Number/Date:

Version: 1.0

Date: (1/14/2021)
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Version Date

Summary of Changes

Consent Change?

NOTE: Leave this section blank for the initial submission. The revision history should be
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Objectives

1.1.

Purpose: The purpose of this research project is to develop an algorithm for aquatic
robots to infer the object indicated within a scene and the action that should be
taken with the said object when a diver performs a pointing gesture.

Background

2.1.

2.2.

2.3.

Significance of Research Question/Purpose: The problem of creating an algorithm to
identify a pointing gesture and interpret the object indicated or intent behind the
gesture is a widely investigated topic in terrestrial environments. However, this same
problem has not been addressed in the underwater domain. Thus, we intend to
bridge this gap in the existing literature and create an algorithm effective in an
underwater environment.

Preliminary Data: Existing publicly available datasets terrestrial pointing gestures, a
terrestrial dataset previously created under study IRB (STUDY00011504), and data
collected during the PI's underwater (ocean and pool) field trials serve as initial data
which may be used during this project.

Existing Literature: The problem of creating a computer vision algorithm to identify a
pointing gesture in a terrestrial environment is a thoroughly investigated topic; and
the larger problem of identifying both the pointing gesture and interpreting the
object indicated or the intent behind the gesture is addressed in [1][2][3]. This
research project contributes to the existing literature by solving this problem in a
new domain, underwater. Up until now, no research successfully addressing this
topic has been published for the underwater domain.

Study Endpoints/Events/Outcomes

3.1

3.2

Primary Endpoint/Event/Outcome: The primary outcome of this research project will
be the development of a computer vision algorithm for aquatic robots which can
identify when a diver performs a pointing gesture and subsequently infer the object
indicated within a scene along with the action that should be taken with the said
object.

Secondary Endpoint(s)/Event(s)/Outcome(s): Any computer vision algorithm requires
a dataset for evaluation and / or training. In order to create the algorithm described
above, we will also build a dataset suited to the purpose.

Study Intervention(s)/Interaction(s)

4.1.

Description: This research project does not include any interactions; however, it
includes an intervention in that the participants contributing data will be asked to
perform a semi-staged task (such as giving a tour or imitating a cooking show) which
will be designed to necessitate the use of pointing gestures. This is the extent of the
participants’ involvement in this project. The videos submitted by the participants
will subsequently be used to develop the investigators’ model.

Page 7 of 19 Template Revised On: 09/01/2019
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5. Procedures Involved

5.1.

5.2.

Study Design: This research project will have three main steps: creation of a dataset
for the training, testing, and validation of the algorithm (consisting of obtaining
videos from the public domain, existing sources as listed Sec 2.2, and from recruited
participants), development of an actual algorithm, and evaluation of the algorithm
on the validation dataset and in real-life robotic deployment.

Study Procedures: The three major components of this research project are (1)
creation of a dataset, (2) algorithm development, and (3) algorithm evaluation and
deployment.

(1) The first major component of the research project will be to create a dataset for
the training, testing, and validation of the inference algorithm.
This dataset will be composed of videos and still frames obtained from
e Existing publicly available gestural datasets
e Videos sourced from the public domain.
e Portions of a dataset previously created by the Student investigator Andrea
Walker under IRB (STUDY00011504).
® Arepository of field trial data from the PI’s field and pool trials
e Videos created specifically for this research by volunteer participants.

When obtaining videos from the volunteer participants, the investigators will first
provide the volunteers with information about the research project and outline
eligibility requirements for a participant's involvement in the research through an
informational recruitment flyer. After the participants read the recruitment flyer and
certify that they are eligible and willing to participate in this research project, they
will be asked to read the consent form for exempt study before they submit their
videos, the volunteers may upload videos of themselves performing tasks
necessitating pointing gestures (detailed within the recruitment flyer) to be included
in the investigators’ dataset. These videos will contain the participants’ likenesses,
and we will request that no geo-location or audio data will be included with the
video submissions. Should either geo-location data or audio be included with the
file, the video will be pre-processed to remove this data, and the original video
destroyed. Note that this entire process will be virtual, with the recruitment flyer
distributed electronically to the participants in the virtual recruitment process, and
the submission of the videos is also electronic, through upload to a Google Form.

After collecting the raw data, it will be pre-processed and separated into training,
testing, and validation sets. The pre-processing will include, but not be limited to,
removal of any audio and geo-location data accompanying the videos, which is not
relevant to the project. The videos will also be renamed for de-identification
purposes and a master key created and kept separate from the dataset to match the
deidentified data, should any participant choose to withdraw. The Pl will have access
to the master key and oversees the storage of the data collected.
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(2) The second major component of the research project will be development of the
computer vision algorithm to identify a pointing gesture and infer both the object
indicated within a scene and the action that should be taken with the said object.
The development of this algorithm will be using either traditional Computer Vision
or Machine / Deep Learning techniques. Depending on the approach utilized, the
algorithm may be trained (algorithm parameters set) using the dataset from step
(1) and/or experimental fine-tuning.

(3

The third major component of the research project will be evaluation and
deployment of the algorithm developed in step (2). This evaluation will be made
using the dataset from (1), using metrics suitable for the algorithm designed.
Deployment of the algorithm will be made on actual robots within the IRV research
lab. This third portion component of the project does not specifically study the
human interaction aspect of this project (addressed in step (1) and (2); rather it is
an evaluation of the efficacy of the model).

5.3. Follow-Up: N/A There will be no follow-up data collected from volunteer participants
in this research project.

5.4. Individually Identifiable Health Information: N/A There will be no medical
information collected.

Data Banking

6.1. Storage and Access: At the conclusion of this specific research project, the dataset
created as described in step (1) within section 5.2 will be stored for future use by the
IRVLab. This dataset will be stored in Box Secure storage, which requires two-factor
authentication to access, and access will only be granted to researchers within the
IRVLab whose research depends on it, as determined by the PI.

6.2. Data: The entire dataset developed in step (1) within section 5.2 will be banked for
future use. Specifically, the final processed dataset, separated into training, testing,
and validation sets will be stored.

Further, the data used to create this dataset, including

o Raw frames or videos from existing publicly available gestural datasets

® Raw Videos sourced from the public domain.

® The dataset previously created by the Student investigator Andrea Walker
under IRB (STUDY00011504).

o Raw Videos and frames from a repository of field trial data from the PI’s
field and pool trials

® Pre-processed videos contributed to this research project by volunteer
participants. Note: the videos contributed to this research project will be
banked in a post-processed form where any audio and/or geolocation data
has been removed. Otherwise, these banked videos will be the original
participants’ submissions and will be banked for future use.
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6.3. Release/Sharing: The sharing of this data will be restricted to IRVLab members who
have completed all necessary training and their research requires such data, as
determined by the PI.

7. Sharing of Results with Participants
7.1. N/A Data will not be shared with the participants.
8. Study Duration

° Participants’ choice, anticipated duration minimum of 10 minutes, maximum of
1 hour.

. Participants may be recruited for up to 6 months.
° This research project is anticipated to be complete by June 2021.
9. Study Population

9.1. Inclusion Criteria: Any participant over the age of 18 who is both willing and
physically able to record a video of themselves performing pointing gestures will be
eligible to participate. This permit but does not target the inclusion of participants
who are pregnant and above the age of 18. Further, since some students over the
age of 18 may be standing members of the National Guard, we do include Active
members of the military (service members) and DoD personnel (including civilian
employees) in the included population. Since these two groups of participants are
not targeted and their participation in this minimal risk research project does not
affect their status as part of these vulnerable populations, there should be no reason
to restrict their participation. Lastly, since the students and employees of the
investigators have an indirect personal interest and can make uniquely valuable
contributions to this research project, they are included in this research project, with
the condition that their terms of employment or student status will not be affected
in any way due to their participation or non-participation in the research project.

9.2. Exclusion Criteria: Any person under the age of 18, or who is either unwilling or
physically unable to record a video of themselves performing pointing gestures will
be ineligible to participate. In addition, any vulnerable population not mentioned in
the inclusion criteria above will be excluded.

9.3. Screening: Potential participants will be screened first when they contact the
researcher listed on the flyer for eligibility and then again through consenting in
which they must certify that they are above the age of 18 and willing for the
investigators to use their video submissions for data.

10.  Vulnerable Populations

10.1. Vulnerable Populations:
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Population / Group

Identify whether any of the following
populations will be targeted, included
(not necessarily targeted) or excluded
from participation in the study.

Children Not included
Pregnant women/fetuses/neonates Included
Prisoners Not included
Adults lacking capacity to consent Not included
and/or adults with diminished capacity

to consent, including, but not limited

to, those with acute medical conditions,

psychiatric disorders, neurologic

disorders, developmental disorders,

and behavioral disorders

Non-English speakers Not included
Those unable to read (illiterate) Not included
Employees of the researcher Included
Students of the researcher Included
Undervalued or disenfranchised social Not included
group

Active members of the military (service | Included
members), DoD personnel (including

civilian employees)

Individual or group that is approached Not included
for participation in research during a

stressful situation such as emergency

room setting, childbirth (labor), etc.

Individual or group that is Not included

disadvantaged in the distribution of
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social goods and services such as
income, housing, or healthcare.

Individual or group with a serious Not included
health condition for which there are no
satisfactory standard treatments.

Individual or group with a fear of Not included
negative consequences for not
participating in the research (e.g.
institutionalization, deportation,
disclosure of stigmatizing behavior).

Any other circumstance/dynamic that Not included
could increase vulnerability to coercion
or exploitation that might influence
consent to research or decision to
continue in research.

1.1.  10.2 Additional Safeguards: This permit but does not target the inclusion of
participants who are pregnant and above the age of 18. Further, since some
students over the age of 18 may be standing members of the National Guard, we
do include Active members of the military (service members) and DoD personnel
(including civilian employees) in the included population. Since these two groups
of participants are not targeted and their participation in this minimal risk research
project does not affect their status as part of these vulnerable populations, there
should be no reason to restrict their participation. Lastly, since the students and
employees of the investigators have an indirect personal interest and can make
uniquely valuable contributions to this research project, they are included in this
research project, with the condition that their terms of employment or student
status will not be affected in any way due to their participation or
non-participation in the research project.

2. Number of Participants

2.1. Number of Participants to be Consented: Approximately 75 participants will be
recruited to contribute to the dataset for this research project.

3. Recruitment Methods

3.1. Recruitment Process: The participants will be recruited from the time of IRB approval
through June 2021. They will be recruited on virtual platforms including through
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3.2,

3.3.

3.4

3.5.

email, social media platforms, graduate student associations and through word of
mouth of the acquaintances of the researchers.

Source of Participants: The investigators’ department, fellow students in the
graduate student association, and associates of the researchers.

Identification of Potential Participants: The participants will self-identify after reading
the recruitment materials created and distributed as described in sections 12.1 and
12.2.

Recruitment Materials: Web-posting and Flyers will be the main recruitment
materials.

Payment: Each participant contributing a video to the research project will receive a
$10 Amazon e-gift card as a thank you gift. Each participant will receive a maximum
of one (1) $10 Amazon gift card, regardless of the number of video submissions
contributed to the research project. Receiving the thank you gift card is contingent
upon the video submission meeting the study criteria, and the gift card will be
electronically delivered to the eligible participants via the email they provide with
their video submission on the intake form.

Withdrawal of Participants

4.1.

4.2.

4.3.

Withdrawal Circumstances: If the videos provided by the participants do not
contain any useful information (i.e., do not conform to the video requirements
listed in the recruitment materials), they will be removed from the dataset.
Participants will be notified via the email they provide on the intake form if their
video is withdrawn from the research project, and will have the option of
submitting another video for consideration if they wish.

Withdrawal Procedures: If a participant wishes to withdraw from the research
project, they must submit their withdrawal in writing, their video submissions will
be deleted permanently from the dataset. However, if a model has already been
trained at the time of the withdrawal, the model trained using their data will be
retained, since the model itself is generalized and data on the withdrawn
participant cannot be directly extracted from the model.

Termination Procedures: Pl will have the discretion to terminate any participants
who do not comply with the study requirements.

Risks to Participants

5.1

Foreseeable Risks: Participation in this project is voluntary and as such bears minimal
risk to the participant. The dataset collected only contains the participants’
likenesses, but the dataset will be deidentified so that the participants’ names are
not revealed by any naming scheme. A master key will be kept separate from the
dataset which matches the deidentified data with the corresponding consent form,
should any participant choose to withdraw. There is no further personal information
about the participants stored, so there is no social, legal, psychological or economic
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risk. Any risk of physical injury is not introduced by the study directly and would only
be introduced by the actions or choices of the participants themselves.

5.2. Reproduction Risks: N/A

5.3. Risks to Others: N/A
6. Incomplete Disclosure or Deception

6.1. Incomplete Disclosure or Deception: N/A
7. Potential Benefits to Participants

7.1. Potential Benefits: There are no guaranteed benefits to the participants from taking
part in this research. We likewise cannot promise any benefits to other parties from
your taking part in this research.

8. Statistical Considerations

8.1. Data Analysis Plan: The data analysis process will begin with pre-processing to
remove audio and geo-location data, if included with the videos contributed to the
dataset. After pre-processing, the video data will be analyzed through manual
annotation of the video submissions, labeling each frame. The videos may also be
resized to a standard shape and normalized. After this dataset preparation, the data
will be separated into training, test, and validation sets.

8.2. Power Analysis: N/A
8.3. Statistical Analysis: N/A

8.4. Data Integrity: The quality of the data will be determined manually, and any blurry
frames will be removed from the dataset. Similarly, any data that does not conform
to the project guidelines (as set out in the recruitment materials) will be removed.
The PI will maintain the dataset throughout the study.

9. Health Information and Privacy Compliance
N/A
9.1.  Select which of the following is applicable to your research:
N/A

X My research does not require access to individual health information and
therefore assert HIPAA does not apply.

[J I am requesting that all research participants sign a HIPCO approved HIPAA

Disclosure Authorization to participate in the research (either the standalone
form or the combined consent and HIPAA Authorization).

[ 1 am requesting the IRB to approve a Waiver or an alteration of research
participant authorization to participate in the research.

Appropriate Use for Research:
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[ An external IRB (e.g. Advarra) is reviewing and we are requesting use of the
authorization language embedded in the template consent form in lieu of the U
of M stand-alone HIPAA Authorization. Note: External IRB must be serving as
the privacy board for this option.

9.2. Identify the source of Private Health Information you will be using for your
research (Check all that apply)
N/A

[ 1 will use the Informatics Consulting Services (ICS) available through CTSI (also
referred to as the University's Information Exchange (IE) or data shelter) to pull
records for me

[ 1 will collect information directly from research participants.

[ 1 will use University services to access and retrieve records from the Bone
Marrow Transplant (BMPT) database, also known as the HSCT (Hematopoietic
Stem Cell Transplant) database.

O 1 will pull records directly from EPIC.

I 1 will retrieve record directly from axiUm / MiPACS

[ 1 will receive data from the Center for Medicare/Medicaid Services
7 1 will receive a limited data set from another institution

[J Other. Describe:

Explain how you will ensure that only records of patients who have agreed to have
their information used for research will be reviewed.
N/A

9.3.  Approximate number of records required for review:
N/A

9.4.  Please describe how you will communicate with research participants during the
course of this research. Check all applicable boxes

[ This research involves record review only. There will be no communication with
research participants.

[J Communication with research participants will take place in the course of
treatment, through MyChart, or other similar forms of communication used
with patients receiving treatment.

[J Communication with research participants will take place outside of treatment
settings. If this box is selected, please describe the type of communication and
how it will be received by participants.

Access to participants
N/A
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SOCIAL PROTOCOL (HRP-580)
PROTOCOL TITLE: Robotic Inference of Gestural Indication
VERSION DATE: January 12, 2021
9.5. Location(s) of storage, sharing and analysis of research data, including any links to
research data (check all that apply).
N/A

[ In the data shelter of the Information Exchange (IE)
[ Stored Analyze [ Share

[ In the Bone Marrow Transplant (BMT) database, also known as the HSCT
(Hematopoietic Stem Cell Transplant) Database

[ Store[ Analyze [ Share

[ In REDCap (recap.ahc.umn.edu)

[ Stored Analyze [ Share

[ In Qualtrics (qualtrics.umn.edu)

[J Store[d Analyze[] Share

[J In OnCore (oncore.umn.edu)

[ Store[d Analyze [ Share

[ In the University’s Box Secure Storage (box.umn.edu)
[ Store[d Analyze [ Share

[J In an AHC-IS supported server. Provide folder path, location of server and IT
Support Contact:

[ Store[d Analyze [ Share

[ In an AHC-IS supported desktop or laptop.
Provide UMN device numbers of all devices:
[ Store[ Analyze[] Share

[J Other.

Indicate if data will be collected, downloaded, accessed, shared or stored using a
server, desktop, laptop, external drive or mobile device (including a tablet computer
such as an iPad or a smartform (iPhone or Android devices) that you have not
already identified in the preceding questions

1 will use a server not previously listed to collect/download research data
1 will use a desktop or laptop not previously listed

1 will use an external hard drive or USB drive (“flash” or “thumb” drives) not
previously listed

1 will use a mobile device such as an tablet or smartphone not previously listed

Page 16 of 19 Template Revised On: 09/01/2019



SOCIAL PROTOCOL (HRP-580)
PROTOCOL TITLE: Robotic Inference of Gestural Indication
VERSION DATE: January 12, 2021

10.

11.

12.

13.

9.6. Consultants. Vendors. Third Parties. N/A
9.7.  Links to identifiable data: N/A

9.8.  Sharing of Data with Research Team Members. Team members will be given access
to the required data base on their research requirements and Pl discretion.

9.9.  Storage and Disposal of Paper Documents: Consent forms and videos will be
collected electronically and stored.

Confidentiality

10.1. Data Security: The PI will oversee the data collected. The data will be stored under
UMN approved such as BOX, Redcap or google drive. Only approved research staff
will be given access to the data once they have completed all necessary training.

Provisions to Monitor the Data to Ensure the Safety of Participants
11.1. Data Integrity Monitoring.

. This is a minimal risk study, and since the dataset will not contain any
personally identifiable health information which could pose a risk to the
participants, there is no necessity for independent data integrity monitoring.

11.2. Data Safety Monitoring.

° As stated above, this is a minimal risk study, and the data collected will pose no
harm or risk to the safety of the participants. Thus, Data safety monitoring is
also not applicable.

Compensation for Research-Related Injury

12.1. Compensation for Research-Related Injury: There will be no compensation for
research-related injury as this is a minimal risk study.

12.2. Contract Language: N/A
Consent Process

. When participants volunteer for the research project, they will be asked to
read an exempt consent form prior to contributing video data to the project.
Participants will not be permitted to proceed with the project unless their
consent has been given through clicking to confirm that they are over 18 of age
and read the exempt consent form. The entire consent process will take place
virtually / in an online environment.

. The waiting time period is entirely dependent on the time it takes the
participant to confirm they read and understand the exempt consent form..

. The investigators will always be reachable to the participants over email if they
ever want to withdraw their video from the dataset.

13.2. Waiver or Alteration of Consent Process (when consent will not be obtained,
required information will not be disclosed, or the research involves deception): It’s
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SOCIAL PROTOCOL (HRP-580)
PROTOCOL TITLE: Robotic Inference of Gestural Indication
VERSION DATE: January 12, 2021

14.

15.
16.
17.

18.

an exempt study so we will be asking participants to read the exempt study consent
form.

13.3. Waiver of Written/Signed Documentation of Consent (when written/signed consent
will not be obtained): It’s an exempt study so we will be asking participants to read
the exempt study consent form.

13.4. Non-English-Speaking Participants: N/A

13.5. Participants Who Are Not Yet Adults (infants, children, teenagers under 18 years of
age): N/A

13.6. Cognitively Impaired Adults, or adults with fluctuating or diminished capacity to
consent: N/A

13.7. Adults Unable to Consent: N/A

Setting

14.1. Research Sites: Online

14.2. International Research: NA

14.3. Community Based Participatory Research: NA
Multi-Site Research: N/A

Coordinating Center Research: N/A

Resources Available

17.1. Resources Available:

° The PI Junaed Sattar will provide oversight for the duration of the entire
research project, as described in section 5.2.

° We have access to approximately 200 suitable participants within the
University of Minnesota Computer Science graduate student body. If 2.5% of
these potential participants respond to the recruitment, we will have our
minimum of 5 recruited participants.

° This research will be conducted from the present until June 2021.

. The facilities used for this research will be primarily virtual, consisting of the
internet, the researchers’, university-hosted, and IRVLab compute servers.
In the final stage of robotic deployment the facilities of the IRVLab may be
utilized, in accordance with the guidelines outlined by the Sunrise Plan.

. All potential collaborators assisting with this research will be members of the
IRVLab, and if they are granted access to the data collected from participants
prior to de-identification, will be required to read this protocol prior to utilizing
this data.

References
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A.2 Social-Behavioral Consent Form, HRP-582

Since our study was ultimately determined to be exempt from IRB review, this Consent
Form was ultimately replaced with the HRP-587 Information form in



Consent Form
Title of Research Study: Robotic Inference of Gestural Indication [protocol #]

Investigator Team Contact Information: Junaed Sattar
For questions about research appointments, the research study, research results, or other concerns,
call the study team at:

Investigator Name: Junaed Sattar Student Investigator Name: Andrea Walker
Investigator Departmental Affiliation: Phone Number:

Computer Science and Engineering Email Address:

Phone Number:

Email Address: Student Investigator Name: Luoyao Chen

Phone Number:
Email Address:

Supported By:
This research is supported by IIS #1845364:Towards robust and natural underwater human-robot
interaction, CON000000078102.

Key Information About This Research Study
The following is a short summary to help you decide whether or not to be a part of this research study. More
detailed information is listed later on in this form. What is research?

® The goal of research is to learn new things in order to help people in the future. Investigators learn
things by following the same plan with a number of participants, so they do not usually make changes
to the plan for individual research participants. You, as an individual, may or may not be helped by
volunteering for a research study.

Why am | being invited to take part in this research study?

We are asking you to take part in this research study because the researchers are seeking adults over
the age of 18 with full upper-body mobility to create videos of themselves making hand and arm
gestures. What should | know about a research study?

Someone will explain this research study to you.
Whether or not you take part is up to you.

You can choose not to take part.

You can agree to take part and later change your mind.
Your decision will not be held against you.

You can ask all the questions you want before you decide.

Why is this research being done?

The goal of this research project is to create an algorithm that allows an aquatic robot to identify
gestures and infer the intent behind the identified gesture. This problem has been widely investigated
Page 1 of 5
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Consent Form
in a terrestrial setting, and we seek to expand the research in the area into the underwater domain.
Your contribution of video data to this project will provide a baseline dataset used while developing
and evaluating this specialized algorithm.

How long will the research last?

The amount of time you spend actively participating in this research study is self-determined. We
expect this will be on average 10-15 minutes, with a maximum duration of 1 hour. We expected a
minimum of 5 and a maximum of 75 participants to be enrolled in the study.

What will | need to do to participate?

You will be asked to record a short video (30 seconds to 10 minutes) of you performing tasks with objects or
interacting in social situations. We will use the gestures captured in these videos for our research project.

More detailed information about the study procedures can be found under “What happens if | say yes, | want
to be in this research?”

Is there any way that being in this study could be bad for me?

This is a minimal-risk study. Your video submissions will contain your likeness, but your identity will only be
known to the Principal and Student investigators listed above. Your video data will be de-identified prior to
storage or sharing with any other researchers within the IRVLab who have a demonstrated need for utilizing
this dataset.

Will being in this study help me in any way?
There are no benefits to you from your taking part in this research. We cannot promise any benefits to others
from your taking part in this research.

What happens if | do not want to be in this research?
Participation in this research project is completely voluntary and opt-in; if you do not wish to volunteer, there
is no further action required on your part.

Detailed Information About This Research Study

The following is more detailed information about this study in addition to the information listed above.

How many people will be studied?
We expect between 5-75 people here will be in this research study out of a likely maximum of 75 people in the
entire study nationally.
What happens if | say “Yes, | want to be in this research”?
® Your participation in this study is limited to the amount of time you choose to spend recording your
video and uploading for submission to the researchers (estimated maximum time commitment of one
hour, to be completed prior to June 2021).
® Anticipated average time commitment: 10-15 minutes
e You will have no direct interaction with the researchers, during this project. Your only interaction with
others will be through virtually submitting your videos online to the researchers, unless you opt to have
Page 2 of 5
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Consent Form
a helper of your choosing record the video.
e This research project will be conducted now through June 2021
Participation in this course project involves a one-time submission of a consent form and video upload.
e In this consent form you will have the option to permit the researchers to contact you for participation
in future projects
e Participation in this project involves recording and submitting a video of yourself (preferably with no
audio); if you are not comfortable with sharing this data, then you should not participate.

What are my responsibilities if | take part in this research?

If you take part in this research, you will be responsible for: Completing a consent form, and both recording
and uploading your video submission.

What happens if | say “Yes”, but | change my mind later?
You can leave the research study at any time and no one will be upset by your decision.

If you decide to leave the research study, contact the investigator so that the investigator can [ remove your
video from the dataset,
including destroying your video submission and google form submission.

There are no adverse consequences to you as the participant if you decide to leave the project. If you decide to
leave the research study, contact the principal investigator in writing to revoke your consent so that the
investigator can remove your video from the dataset in a timely manner.

Choosing not to be in this study or to stop being in this study will not result in any penalty to you or loss of
benefit to which you are entitled. This means that your choice not to be in this study will not negatively affect
your academic standing as a student, or your present or future employment with the University of Minnesota.

Will it cost me anything to participate in this research study?

= There will be no cost to you for any of the study activities or procedures.

What happens to the information collected for the research?

Efforts will be made to limit the use and disclosure of your personal information, including research study
records, to people who have a need to review this information. We cannot promise complete confidentiality.
Organizations that may inspect and copy your information include the Institutional Review Board (IRB), the
committee that provides ethical and regulatory oversight of research, and other representatives of this
institution, including those that have responsibilities for monitoring or ensuring compliance.

We may publish the results of this research. However, we will keep your name and other identifying
information confidential.

Data Collected

If identifiers are removed from your identifiable private information or identifiable samples that are collected
during this research, that information or those samples could be used for future research studies or distributed
to another investigator for future research studies without your additional informed consent.
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Consent Form
After the research project is completed, the data will be retained (in an anonymized form) for potential use by
the investigators and members of the IRVLab whose research requires such a dataset. The data will be stored
on the University of Minnesota’s secure Box storage, protected by two-factor authentication and with access
restricted to the investigators listed above and IRVLab researchers whose work requires such data. The data
you provide will be retained indefinitely for this and subsequent related research projects.

‘What will be done with my data when this study is over?

Secondary (future) research without identifiers:

We will use and may share data for future research. They may be shared with researchers/institutions outside
of University of Minnesota. This could include for profit companies. We will not ask for your consent before
using or sharing them. We will remove identifiers from your data, which means that nobody who works with
them for future research will know who you are. Therefore, you will not receive any results or financial benefit
from future research done on your specimens or data.

Whom do | contact if | have questions, concerns or feedback about my experience?

This research has been reviewed and approved by an IRB within the Human Research Protections Program
(HRPP). To share feedback privately with the HRPP about your research experience, call the Research
Participants’ Advocate Line at 612-625-1650 (Toll Free: 1-888-224-8636) or go to z.umn.edu/participants. You
are encouraged to contact the HRPP if:

Your questions, concerns, or complaints are not being answered by the research team.
You cannot reach the research team.

You want to talk to someone besides the research team.

You have questions about your rights as a research participant.

You want to get information or provide input about this research.

Will | have a chance to provide feedback after the study is over?

The HRPP may ask you to complete a survey that asks about your experience as a research participant. You do
not have to complete the survey if you do not want to. If you do choose to complete the survey, your responses
will be anonymous.

If you are not asked to complete a survey, but you would like to share feedback, please contact the study team
or the HRPP. See the “Investigator Contact Information” of this form for study team contact information and
“Whom do | contact if | have questions, concerns or feedback about my experience?” of this form for HRPP
contact information.

Can | be removed from the research?

The person in charge of the research study can remove you from the research study without your approval.
Possible reasons for removal include improper or broken video submissions or submission of a consent form
without a signature.

We will tell you about any new information that may affect your choice to stay in the research.

Will | be compensated for my participation?

If you agree to take part in this research study, you will receive a $10 Amazon e-gift card as a thank you for your

Page 4 of 5
Version Date: Jan. 15, 2021
TEMPLATE VERSION DATE: 08/01/2019

81



Consent Form
time and effort. Each participant will receive a maximum of one (1) $10 Amazon e-gift card, regardless of the
number of video submissions contributed. Receiving the thank you gift card is contingent upon the video
submission meeting the study criteria and the consent form being completed and signed. After confirmation of
these requirements, the gift card will be electronically delivered to the eligible participants via the email they
provide with their video submission on the intake form.

Optional Elements:

The following research activities are optional, meaning that you do not have to agree to them in order to
participate in the research study. Please indicate your willingness to participate in these optional activities by
placing your initials next to each activity.

Yes, No,
| agree | disagree
The investigator may audio or video record me to aid with data analysis.

The investigator will not share these recordings with anyone outside of
the immediate study team.

The investigator may audio or video record me for use in scholarly
presentations or publications. My identity may be shared as part of this
activity, although the investigator will attempt to limit such
identification. | understand the risks associated with such identification.

The investigator may contact me in the future to see whether | am
interested in participating in other research studies by Junaed Sattar.

Signature Block for Capable Adult:

Your signature documents your permission to take part in this research. You will be provided a copy of this
signed document.

Signature of Participant Date

Printed Name of Participant

Signature of Person Obtaining Consent Date

Printed Name of Person Obtaining Consent
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UNIVERSITY OF MINNESOTA

Twin Cities Campus

Human Research Protection Program Room 350-2

. ) . McNamara Alumni Center
Office of the Vice President for Research 200 Oak Sireet S.E.

Minneapolis, MN 55455

612-626-5654
irb@umn.edu
https://research.umn.edu/units/irb

MODIFICATIONS REQUIRED TO SECURE “APPROVED” DETERMINATION

February 5, 2021
Dear Junaed Sattar:

On 2/5/2021, the IRB reviewed the following submission:

Type of Review: | Initial Study
Title of Study: | Robotic Inference of Gestural Indication
Investigator: | Junaed Sattar
IRB ID: | STUDY00011983
Sponsored Funding: | Sponsor Name: THE NATIONAL SCIENCE
FOUNDATION, Grant Title: EAGER: Towards robust
and natural underwater human-robot
Grant ID: | CON000000078102;
Internal UMN Funding: | None
Fund Management | None
Outside University:
IND, IDE, or HDE: | None

e Please have Junaed Sattar complete Human Research - Social / Behavioral or
Humanist Research Investigators and Key Personnel. - Basic Course.

e Because this study is exempt from IRB review, you may replace the current
consent form with HRP-587 Information Sheet for Exempt Research. If you do
so, please modify the protocol to indicate that you will not be collecting signed

consent forms.

Please make changes to your submission in ETHOS and re-submit when ready. When re-
submitting, please provide a summary of the changes you made and how those changes
address the required modifications above. For each modified document, please submit
only a “tracked-changes” version. If approved and finalized, your tracked changes will be
accepted automatically, so be sure to view your document with “No Markup” under the
Review tab in WORD prior to uploading it to ensure proper formatting. For additional
guidance, please see the detailed job aids available in the “How to Submit” section of the

IRB website

Sincerely,

Victoria Mercer
IRB Analyst

Driven to Discover*
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be IRB review exempt.
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INFORMATION SHEET FOR RESEARCH
Robotic Inference of Gestural Indication Study #STUDY00011983

You are invited to take part in a research study because the researchers are seeking adults over the
age of 18 with full upper-body mobility to create videos of themselves making hand and arm
gestures. You were selected as a possible participant because you self-identify as a qualified
candidate. We ask that you read this form and ask any questions you may have before agreeing to be
in the study.

This study is being conducted by: Junaed Sattar, Ph.D, Assistant Professor of Computer Science and
Engineering, University of Minnesota, Twin Cities.
Phone Number: : Email Address:

Procedures:
If you agree to be in this study, we ask you to do the following things:

You will be asked to record a short video (of at least 30 seconds) of you performing natural pointing
gestures. We will use the gestures captured in these videos for our research project.

We expect your participation will last on average 10-15 minutes, with a maximum duration of 1
hour. We expect a minimum of 5 and a maximum of 75 participants to be enrolled in the study.

Confidentiality:

The records of this study will be kept private. In any sort of report we might publish, we will not
include any information that will make it possible to identify a subject. Research records will be
stored securely and only researchers will have access to the records.

Voluntary Nature of the Study:

Participation in this study is voluntary. Your decision whether or not to participate will not affect
your current or future relations with the University of Minnesota. If you decide to participate, you
are free to not answer any question or withdraw at any time without affecting those relationships.

Contacts and Questions:

The researcher(s) conducting this study is (are): Junaed Sattar, Ph.D, Computer Science and
Engineering: You may ask any questions you have now. If you have questions later, you are
encouraged to contact them at Phone Number: : Email Address:

This research has been reviewed and approved by an IRB within the Human Research Protections
Program (HRPP). To share feedback privately with the HRPP about your research experience, call
the Research Participants’ Advocate Line at 612-625-1650 (Toll Free: 1-888-224-8636) or go to
z.umn.edu/participants. You are encouraged to contact the HRPP if:

HRP-587 Template Version: 2/28/2019



Your questions, concerns, or complaints are not being answered by the research team.
You cannot reach the research team.

You want to talk to someone besides the research team.

You have questions about your rights as a research participant.

You want to get information or provide input about this research.

You will be able to download a copy of this information to keep for your records.

HRP-587 Template Version: 2/28/2019
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UNIVERSITY OF MINNESOTA

Twin Cities Campus Human Research Protection Program Room 350-2

Office of the Vice President for Research 200 Oak Street S.E.

Minneapolis, MN 55455

612-626-5654
irb@umn.edu

https://research.umn.edu/units/irb

EXEMPTION DETERMINATION
February 8, 2021

Dear Junaed Sattar:

IMPORTANT: All human research conducted at the University of Minnesota must
adhere to the IRB guidance and requirements, Office of the Vice President for
Research guidance, and the Medical School/Office of Academic Clinical Affairs
Sunrise Implementation Plan in response to the COVID-19 pandemic. Non-medical
school investigators should contact their Associate Dean for Research for
information on the "sunrise" process.

Even with IRB approval, in-person research visits may not take place without
documented approval by either the Medical School/OACA sunrise process or the
Associate Dean for Research sunrise process. These reviews are intended to protect
the health of all research participants and the broader University/Fairview
communities during the COVID-19 pandemic. Researchers must inform the IRB of
their approved sunrise plans. The IRB will document the approval status on
ETHOS via a comment in the study history section Please note that IRB approved
COVID-19 related research is exempt from the sunrise requirements.

All researchers should review the guidance for the IRB, the medical school and their
own departments as guidance is updated frequently.

On 2/8/2021, the IRB reviewed the following submission:

McNamara Alumni Center

Type of Review: | Initial Study

Title of Study: | Robotic Inference of Gestural Indication

Investigator: | Junaed Sattar

IRB ID: | STUDY00011983

Sponsored Funding: | Sponsor Name: THE NATIONAL SCIENCE
FOUNDATION, Grant Title: EAGER: Towards
robust and natural underwater human-robot

Grant ID/Con Number: | CON000000078102;

Internal UMN Funding: | None

Fund Management | None
Outside University:

IND, IDE, or HDE: | None

Documents Reviewed |  Dr. Sattar CITI, Category: Other;
with this Submission: | « HRP-587 - Robotic Inference of Gestural Indication

Driven to Discover*
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.docx, Category: Consent Form;

» IRVLab Gesture Inference Recruitment
materials.docx, Category: Recruitment Materials;

* Flyer IRVLab Gestural Inference.docx, Category:
Recruitment Materials;

* Video sample, Category: Other;

« HRP-580 - Robotic Inference of Gestural Indication
.docx, Category: IRB Protocol

The IRB determined that this study meets the criteria for exemption from IRB review. To
arrive at this determination, the IRB used “WORKSHEET: Exemption (HRP-312).” If
you have any questions about this determination, please review that Worksheet in the
HRPP Toolkit Library and contact the IRB office if needed.

This study met the following category(ies) for exemption:

* (3)(i) Research involving benign behavioral interventions in conjunction with the
collection of information from an adult subject through verbal or written
responses (including data entry) or audiovisual recording if the subject
prospectively agrees to the intervention and information collection and at least
one of the following criteria is met: (B) Any disclosure of the human subjects’
responses outside the research would not reasonably place the subjects at risk of
criminal or civil liability or be damaging to the subjects’ financial standing,
employability, educational advancement, or reputation

Ongoing IRB review and approval for this study is not required; however, this
determination applies only to the activities described in the IRB submission and does not
apply should any changes be made. If changes are made and there are questions about
whether these activities impact the exempt determination, please submit a Modification to
the IRB for a determination.

In conducting this study, you are required to follow the requirements listed in the
Investigator Manual (HRP-103), which can be found by navigating to the HRPP Toolkit
Library on the IRB website.

For grant certification purposes, you will need these dates and the Assurance of
Compliance number which is FWA00000312 (Fairview Health Systems Research
FWAO00000325, Gillette Children's Specialty Healthcare FWA00004003).
Sincerely,

Victoria Mercer

IRB Analyst

We strive to provide clear, consistent and timely service to maintain a culture of respect,
beneficence and justice in research. Complete a brief survey about your experience.

Page 2 of 2
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Want to take part in a robotics study
and get a $10 Amazon Gift Card?

The University of Minnesota
Interactive Robotics and Vision lab is
recruiting participants for a research
project in the area of human-robot
interaction (HRI). Specifically, we are
interested in making underwater
robots understand when human
divers point to things!

To participate, we are asking for volunteers
(ages 18+) to record a short (~30-second)
video of themselves doing simple tasks
involving natural pointing gestures and to
submit this video electronically.

For more information, scan the QR code, or visit
https:/irvliab.dLumn.edu/human-robot-collaboration/gestural-inference .
For further questions, contact the principal investigator
Junaed Sattar, junaed@umn.edu .

Interactive Vision

& Robotics Lab

UNIVERSITY OF MINNESOTA
Driven to Discover®
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Interactive Robotics and Vision Lab

Department of Computer Science and Engineering

- -

People Projects Publications Robots ~ Resources ~

@ » PROJECTS » HUMAN-ROBOT COLLABORATION » GESTURAL INFERENCE

Gestural Inference

The University of Minnesota's Interactive Robotics and Vision lab is recruiting participants for a
research project in the area of human-robot interaction (HRI). To participate, we are asking for
volunteers to record a short (approximately 30-second) video of themselves pointing at objects.

If you agree to take part in this research study, you will receive a $10 Amazon e-gift card as a thank
you for your time and effort. Each participant can receive a maximum of one (1) $10 Amazon gift
card, regardless of the number of video submissions contributed. Receiving the thank you gift card is
contingent upon the video submission meeting the study criteria. If your video submission does not
contain pointing gestures as defined in the criteria below, you will not receive the thank you gift
card. After the submission is reviewed and accepted, the gift card will be electronically delivered to
eligible participants via the email they provide with their video submission on the intake form.

If you would like to participate, please see the following instructions and attached information form
for additional project information. Note that you must be age 18 or older to participate.
Thank you in advance!

Figure A.1: Website part 1.
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1. Read the attached information form to determine your eligibility and continued interest in
participation.
Robotic Inference of Gestural Indication Info Form.pdf

2. Create a video/video(s) of yourself (of duration at least 30 seconds) performing one or more of
the following classes of tasks. When performing each pointing gesture, please point in the
direction intended or toward the object being indicated, and hold the pose for roughly two
seconds. We suggest that you place yourself a moderate distance from the camera
(approximately two meters), and we prefer videos made with uncluttered backgrounds.

A. Gesturing for someone to go somewhere

a. Directing people to a location during a tour
b. Telling a pet to go to a location (another room, or outside, for example)
Gesture for Go Somewhere:

B. Gesturing to pick up an object

a. Cooking with assistance (prepare, or pretend to prepare a meal where an assistant
brings you any necessary utensils or ingredients)

b. Performing tasks like handicrafts with assistants i.e including an indication of picking
up things illustrated by hand gestures
Gesture to Pick up an Object:

Figure A.2: Website part 2.
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Gesture to Pick up an Object:

Z. Gesturing to take a photo

a. Point at an object that you would like a photograph taken of

Gesture for Take a Picture:
LAY

Figure A.3: Website part 3.
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D. General Pointing gestures

a. Pantomiming giving a weather forecast report
b. Any other activity that involves making natural pointing gestures
General Pointing Gestures may look like this:

Please use the above images as reference for each of the four classes of gestures. You may make
these gestures in any orientation.

When capturing your video, please do not use any filters, or add color-correction afterwards.
Likewise, please do not edit the video after capture, unless it is necessary to adjust the brightness or
crop. Do not alter the shape or orientation of the gesture or make any other edits.

We request that your video submission not contain geo-location data or audio. If included, these
components of the video will be removed and the original video destroyed.

Sample video submissions are given here:

Figure A.4: Website part 4.



Sample video submissions are given here:

—— v

0:00/1:29

-

3. Please upload your video(s) using this google form: https:.//forms.gle/YgS9TUqqUK|6vwg38

Figure A.5: Website part 5.
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A.7 Intake Form

Interactive Vision

& Robotics Lab

\ AT A
NIVERSITY OF MINNESOTA

Driven to Discover

Gestural Inference Research Project
Volunteer Form

This is the data collection form for the IRVLab Gestural Inference Research Project, led by P1
Junaed Sattar and Student investigators Andrea Walker and Luoyao Chen.

The name and photo associated with your Google account will be recorded when you wpload
files and submit this form %

Mot walk0798 @umn.edu? Switch account

* Requirad

If you would like to submit more than five videos, please revisit this form and
upload again. You may re-use the same consent form for each submission.

Please Upload your video{s) for submission: *

& Add file

Please enter your email address to receive the $10 Amazon e-gift card as thank
you: *

Your answer

| certify that | have read the information form and am over 18 years of age: *

l:] Yes

May we contact you in the future to invite you to participate in other IRVLab
studies? *

Mewer submit passwords through Goagle Forms.

This form was created insice of Untversity of Minnesota Twin Cities. Report Abuse

Figure A.6: Intake form for research study
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