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Abstract—This paper presents a learning-based framework
named SMARTTALK for natural-language human-robot interac-
tion (HRI). The primary goal of this framework is to enable
non-expert users to control and program a mobile robot using
natural language commands. SMARTTALK is modality-agnostic,
and is capable of integrating with both speech and non-speech
(e.g., gesture-based) communication. Initially, robots using this
mechanism are equipped with a limited vocabulary of primitive
commands and functionality; however, through extended use and
interaction, the robots are able to learn new commands and
adapt to user’s behaviors and habits. This makes the proposed
framework highly desirable for long-term deployment in a variety
of HRI tasks. We present the design of this framework and
experimental data on a number of realistic scenarios to evaluate
its performance. A qualitative experiment on a robotic platform
is also presented.

I. INTRODUCTION

Effective interaction between humans and robots in any
environment, and in any means of communication, relies
heavily on the unambiguous exchange of information. In
the case of human-to-human communication, spoken dialog
is the predominant method of interaction, though gesture-
based communication is fairly common, particularly in cases
where speech-based communication is not possible (e.g., being
underwater, or having some form of communication handicap).
For widespread deployment of robots in the society, an error-
free, robust and natural method of human-robot interaction is
necessary. It is not only crucial for robots to be able to respond
and react to this form of conversation, but also have the
ability to learn new instructions and extend their abilities by
composing new functionalities from existing ones. However,
mapping a natural-language command into an action by a
robot “on-the-fly” remains a challenging task. An alternative
approach would be to map novel instructions from a human
user to an intent in a given task context. In the context of
this paper, intent is the objective the user wants the robot to
achieve. Applications in speech recognition, natural language
processing, and machine learning have made it possible for
a computer to determine the intent of a command issued by
a human, while methods from human-robot interaction (HRI)
have made it possible for robots to provide useful feedback
to these commands given their environment. Our goal in
this paper is to present a framework for natural language

Fig. 1: A Husky AGV robot during a robot field trial. The
exploration of large, unstructured outdoors environments is a
likely scenario for adaptable natural language communication
in human-robot teams.

HRI which makes it possible for (a) non-expert users to
interact with a robot, (b) a robot to infer a user’s intent from
commands previously unknown to the robot, and (c) a robot to
extend its abilities by mapping the inferred intent into existing
capabilities.

Current HRI research has been increasingly incorporating
natural language processing (e.g., [1]) as speech recognition
has become more accurate as of late, though issues with
natural language processing pose certain challenges and com-
plications. Associating natural (spoken) dialog with an action
performed by a robot is often a complex process involving
a multitude of factors, and consequently, robot-human com-
munication often relies on more realiable, engineered, and
artificial approaches. However, in a real-world environment,
this natural method of communication is not only desired, but
can be deemed necessary. This disconnect between intuitive
communication and robot functionality poses a divide between
robots performing their functions in a laboratory setting and in
a real-world environment. To address this issue, we have built
a framework called SMARTTALK, which provides robotics
researchers the ability to link the intent of spoken dialog with
robot functionality, as well as give useful user feedback.



A. Motivation

The proposed work enables people and robots to com-
municate through natural language, which may or may not
be communicated aurally. In fact, even being geographi-
cally dispersed and without having a line-of-sight contact,
the SMARTTALK framework can be used as a back-end for
wireless, text- or gesture-based interaction system. Motiva-
tion for our work stems from the need to perform large-
area searches for lost campers or hikers in the wilderness
(e.g., in mountainous regions or national parks), which is a
demanding and high-risk task even for experienced rescue pro-
fessionals and first responders, particularly in cold and harsh
winter seasons. Additional applications exist in healthcare
and caregiving tasks which, with the deployment of robotic
caregivers, smart wheelchairs [2] and autonomous monitoring,
are rapidly becoming more automated. Both of these scenarios
require robotic systems to have natural language interaction
capabilities to be deployed effectively.

B. Related Work

A large body of literature addresses natural language com-
munication in general and in applications of HRI in particular,
though few combine learning approaches with interaction.
Learning-by-demonstration is a popular method for teaching
robots new capabilities that attempts to learn low-level motor
primitives from human demonstrations to be repeated indepen-
dently by robots in future tasks [3]. Visual cues are often used
alongside (or in lieu of, for example in the underwater domain)
spoken dialog by several researchers for communication be-
tween robots in a network comprised of heterogeneous robots,
for example by Dunbabin et al. [4]. The robotics literature has
extensive examples of gesture-based robot control, particularly
for direct Human-Robot Interaction (HRI). Both explicit as
well as implicit communication frameworks between human
operators and robotic systems have been considered (e.g., [5]–
[7]). Pateras et al. uses fuzzy logic to reduce uncertainty to
reduce high-level task descriptions into robot sensor-specific
commands in a spoken-dialog HRI model [8]. Montemerlo et
al. have investigated risk functions for a safer navigation of a
robotic nurse in the care of the elderly [9]. Researchers have
looked into POMDP formulations of human-robot dialog mod-
els [10], [11] and planning cost models for efficient human–
robot interaction tasks [12], [13]. Work also exists in enhanced
natural language dialog for human-robot communication [14],
real-time task planning [15], HRI for multiplayer games [16],
and the generation of directed questions to reduce uncertainty
in natural language human-robot communication [17].

II. TECHNICAL APPROACH

In order to deploy robots to perform a set of tasks, a natural
method of communication must be established. The three
main aspects of natural communication we wish to address are:

1) Communication using spoken dialog,
2) Associating a command with a specific set of robot

actions, and
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Fig. 2: System flow diagram in the SMARTTALK framework.

3) Bi-directional communication enabling feedback to the
user.

SMARTTALK uses a client-server model for communication
between an end-user and robot. The client is the entity
interacting with the robot; e.g., a smart phone being used
for human-robot communication for geologically distributed
deployments, or a human user during direct interaction with a
robotic wheelchair are both considered to be clients. Figure 2
shows an example task flow of the system assuming a user
with a smart phone acting as the client, which can be broken
down into the following steps:

1) The user running a client application speaks into the
device, which uses voice recognition to parse speech into
text and sends it as a command to the server.

2) The server runs the command through the parser
3) The parser checks if the command is an existing one. If

it is, then
a) the robot will execute its corresponding action and
b) send acknowledgment feedback to user.

4) If the command is not an existing one, then the current
classification model will be used to determine its “class”
(see Section II-B below).
a) If the classifier determines that the likelihood of a

command being given passes a certain threshold, then
the command is successfully classified, and the model
is updated with the command and the associated label.

b) If the command did not pass the threshold, the user is
prompted to provide more information so that a label
can be applied to the command.

c) In either case above, the classifier shall be updated
with new information.

5) Provide task feedback to the user.
By applying a client-server model for communication, a user

with any device connected to a network with voice recognition



capabilities has the ability to communicate with the robot.
The following subsections provide descriptions of the various
components of the SMARTTALK framework.

A. Natural Language Input

For a robot to perform any type of analysis on natural
language input from a user, particularly in speech form, it
must first be translated into text. Our implementation currently
uses Google’s speech recognition capability, which adapts the
learned speech model to individual users, resulting in highly
accurate speech recognition. For disjoint locations between the
user and the robot, a smart phone acts as the client and is only
responsible for translating the user’s speech to text, as well
as sending and receiving messages. When using SMARTTALK
locally without a medium such as a smart phone, speech
recognition occurs on the server.

B. Classification

To understand the user’s intent, SMARTTALK uses a multi-
class Naive Bayes classifier [18]. This model applies a feature
extractor indicating which words in the current model are
contained in the given command. For example, the sentence
“This is sharp” may consist of the features “contains(sharp):
True” or “contains(dull): False”. This classification technique
assumes that every feature value is independent of every
other feature value given the class variable. The method for
assigning a class label y = Ck for some k is shown in
equation 1:

y = argmax
k=1→K

p(Ck)

n∏
i=1

p(xi|Ck) (1)

where x is a vector x = (x1, x2, ..., xn) representing n
features. Commands input into the classifier are checked by
an uncertainty threshold which determines whether or not the
robot should proceed with the given command or prompt
the user for more information. If the probability passes the
threshold, then the current model is updated with the new
data, the command, and the predicted label. If the probability
does not pass the threshold, then the user is prompted to
provide the correct classification for that command, and again
the model is updated. Through this model, SMARTTALK is
able to continuously learn throughout its usage.

Commands received by the server are parsed in two steps.
The first step is checking whether or not the given command
is built-in (i.e., preexisting). Because our classification model
loses accuracy when classifying very short commands (one
or two words), the built-in command feature alleviates that
problem by providing mapping from short phrases to robot
actions. SMARTTALK has two built-in commands for learning
purposes: train and test. The train command allows
users to give more examples for previous commands, as well as
give a new command to be classified. The test allows a user
to view what class a command is classified as without actually
updating the model. This is to prevent incorrect learning during
early stages of use, or when using commands with very little

training data. Users also have the ability to write their own
built-in commands for various tasks.

C. User Feedback

With no feedback mechanism, the user is left without any
knowledge of the robot’s intentions, confusions, or concerns.
This ambiguity can lead to unexpected results, and provide
no information as to how those conclusions were reached by
the robot. The three types of feedback we are most concerned
with are acknowledgment, risk assessment, and uncertainty.
Acknowledgment provides the user with the knowledge that a
given command was correctly classified, and that the knowl-
edge base has expanded. This confirmation for accepting a
given task allows a human to direct their focus on a different
task at hand, knowing that the robot knows what it needs to do.
The assessment of risk for a given command provides a safe,
and ultimately successful interaction [19]. Because our system
provides intent, it is possible for a command to be successfully
understood in the context of the classification model, but
also carry significant risk in execution – risk which may
not be possible to estimate simply from the given command.
Without measuring task context or assessing the environment
through sensory perception, it would not be possible to build
a dynamically updating (and accurate) model of risk involved
in task execution, nor would it be possible to assign priorities
in the presence of significant risk. SMARTTALK provides
the ability to use this calculated risk assessment during the
interaction; however the framework itself does not address risk
computation. This risk assessment value must pass a threshold
for the robot to execute the command.

Uncertainty is communicated back to the user during cases
of low likelihoods for every class given by the classifier. By
placing a threshold on the classification probability of a given
command, we can determine when the robot is unable to infer
the intent of that command. In this case, the robot provides
the intent it is most confident with, and prompts the user to
confirm that is indeed what they intended. If not, then the robot
again prompts the user for more information to better classify
the command. This confirmation updates the classification
model for understanding the intent of a new command with
a previously known action. When given a completely new
command for an action which does not yet exist, the robot
will be able to classify this command by updating its model,
but will be unable to link that new command to an action.
However, given a new complex instruction, the robot, with
additional information from the user, will be able to represent
it by combining existing primitives. In this way, we are able
to form a “macro” for this instruction. As an example sce-
nario, consider a quad-copter with a classification model only
equipped with two instructions, “tilt up”, and “fly straight”.
Consider a new command, “loop the loop”, for which the
quad-copter has no function for. This command can be broken
down into two primitives: “fly straight”, “continuously tilt up”.
SMARTTALK makes it possible for the user to construct the
instructions by dictating, “fly straight, continue to tilt up until
you are level with the ground, then fly straight again”. By



Command Label
bring my plates to the kitchen and put them on the counter deliver

put my clothes in the hamper deliver
put my mug into the dishwasher please deliver

bring my trash outside and put it in the barrel deliver
throw my shoes in the closet deliver
take this glass to the kitchen deliver

get me my shoes from the closet get
bring me the remote get

go grab my clothes from the dryer get
can you go get the mail please get

can you go to the cellar and get me a bottle of soda get
hurry up and get me my keys, weŕe late get

clean up this mess clean
sweep up the kitchen clean

pick up all of my clothes off of the ground and put them away clean
get the vacuum out of the closet and vacuum the hallway clean

can you pick up all this junk on the ground clean
how much battery do you have left communicate
hey robot where are you right now communicate

what time is it communicate
do you know where I left my car keys communicate

what is the temperature in here communicate

TABLE I: Training data depicting interactions with a home-service robot. The “Label” column shows the intent for the given
command.

combining primitives in this way, a robot is able to learn
new functionality given individual functions which it already
knows how to perform. If there exists no primitives for a
new command, SMARTTALK would still be able to classify
it correctly; obviously the functionality needs to be mapped
to some action by the user a priori to be useful. Nevertheless,
SMARTTALK provides the mechanism to detect and construct
the understanding of novel instructions, and the ability to
communicate this to the user.

III. EXPERIMENTS

We test our classification model with simulated robots in
different environments, using commands commonly used in
each domain. For each environment, we use a small data
set to train a Naive Bayes classifier. We then proceed to
test that model on a holdout testing set to find the accuracy
and a confusion matrix, which allows us to visualize the
performance of our classifier. Each column in the confusion
matrix represents the instances in a predicted class, whereas
each row represents the instance in the actual class. Due to
space limitations, not all testing data is provided; however,
the training and testing instructions for the service robot and
the hospital robot scenarios (described below in Sections III-A
and III-B) are shown in Tables I, II, III, and IV respectively.
SMARTTALK has been implemented in Python, and is currently
hosted on GitHub1.

A. Service Robot

Tailored towards the elderly or disabled, we show a simple
classification model for a robot aiding users with tasks at
home. Physical limitations, such as being wheelchair bound,

1https://github.com/cameronfabbri/smartTalk
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Fig. 3: Confusion Matrix in the service robot scenario.

unable to use hands, etc. could inhibit the user from commu-
nicating with the robot using gestures, text, or other type of
communication. Spoken dialog provides communication given
these physical limitations, while also functioning as the most
common and natural form of communication for people in
their homes. Our training set consisted of four labels common
to commands for household activities: deliver, get, clean, and
communicate. With five training examples for each label, we
achieve an accuracy of 91.6%. Figure 3 displays the confusion
matrix.

B. Hospital-care Robot

Hospitals are already making use of robots within operating
rooms. We present a case for which a robot could aid the



Command Label
take my plate and glass back to the kitchen please deliver

put this shirt on my bed please deliver
can you put all of the dishes into the dishwasher deliver

get my car keys from the drawer get
go to the fridge and grab me a beer please get

go get me another pair of socks from my dresser get
sweep up all of these crumbs on the floor clean

can you vacuum all of the bedrooms clean
pick all of this garbage off of the ground clean

how much battery do you have communicate
what’s the time communicate

do you know where I put my wallet communicate

TABLE II: Testing data for the home-service robot.
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Fig. 4: Confusion Matrix for a hospital-care robot.

nurses on the hospital floors. In many hospitals, nurses are very
short staffed, leaving only one nurse with multiple patients.
For tasks that do not require in-depth knowledge or intuition
a doctor or nurse possesses, a robot could be substituted to
provide better care for patients. Delivering food, cleaning up,
and fetching tools are some examples of these tasks. In many
hospitals, there are rooms that contain high radiation that are
very harmful to humans, for which the use of robots could
be a possibility. During patient inspection, the use of a robot
could also provide information collection and recollection,
alleviating the need for manual note taking. Using five training
samples for each label, we achieve an accuracy of 86.6%.
Figure 4 displays the confusion matrix.

C. Search and Rescue

Many search and rescue teams encounter dangerous situa-
tions, whether it be the environment, the weather, or wildlife.
We can increase the safety of humans in these situations by
placing most of the risk on the robot. Humans can avoid
exploring dangerous mines, caves, or various types of rubble,
while still obtaining control of the robot and receiving feed-
back with information. Using five training examples for each
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Fig. 5: Confusion Matrix for a search-and-rescue robot.

label, we achieve an accuracy of 83.3%. Figure 5 displays the
confusion matrix.

D. UAV

Unmanned air vehicles are becoming more popular as a
way of conducting surveillance or providing assistance in a
number of situations. However, UAVs control mechanisms are
usually complicated and require rigorous, specialized training.
With the use of spoken dialog, a less strenuous method of
control can be achieved, as a simplified wrapper over the
standard control mechanism. Using five training examples for
each label, we achieve an accuracy of 80%. Figure 6 displays
the confusion matrix.

E. Underwater Robot

Search and rescue, inspection, monitoring, and repairing
are all tasks robots working in the ocean are capable of
completing. Human moderators on the boat could be able to
control these using natural language, instead of sending divers
down into the water, potentially putting them in danger. Using
five training examples for each label, we achieve an accuracy
of 91.6%. Figure 7 displays the confusion matrix.
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IV. ROBOT TRIALS

To demonstrate the usability of the SMARTTALK framework,
a qualitative interaction experiment on a physical robot were
carried out by using natural language to control a robot. The
robot tested was a custom built indoor robot composed of an
Arduino UNO microcontroller, equipped with an ultrasonic
distance sensor and a Raspberry Pi 2 Model B computer. The
robot base is complete with a body and differential four-wheel
drive, as seen in Figure 8. Indoor experiments were conducted
using SMARTTALK running on the Raspberry Pi. Commands
sent to the Raspberry Pi were parsed by SMARTTALK, al-
lowing the execution of the robot’s actions controlled through
the Arduino. Flexibility on the parsing engine by use of text
classification allows for a natural flow of speech as opposed
to very specific and limited set of built in commands.

Field experiments on an outdoor robot (a Clearpath Robotics
Husky 200 AGV, using a Google Glass for natural language
interaction) have also been conducted. In those experiments,

Command Label
bring the medicine to the patient in room 110 deliver

give these papers to a nurse on floor 3 deliver
take these papers and bring them back to my office deliver

bring this tray to room 366 deliver
bring these flowers to the front desk on floor 4 deliver

go to the operating room and give the doctor the scissors deliver
go to the front desk and ask for patient number 45’s papers get

go to room number 32 and bring back the food trays get
get me my glasses from my office get

bring me the stethoscope from the room next door get
find Mary and tell her to come here get

go get the mop and bucket from the janitors closet get
take vital signs from the patient in room 132 get

remember this note
okay take a note note

listen up note
sweep the hallway please clean

mop up the blood on the floor clean
make all of the beds clean

go to room 341 and mop the floor clean
don’t let anybody else in the door secure

make sure all the doors are locked on this floor secure
stop the people coming from the floor below secure

TABLE III: Hospital robot training data.

the Husky was commanded through the Google Glass to
perform basic navigation tasks, analogous to those that a
human user would give a robot to explore an (indoor or
outdoor) environment. Experience from these tests show that
voice recognition in an indoor environment resulted in a
high-accuracy recognition. Connection using the Google Glass
was done through a TCP socket over Wireless Ethernet.
Experiments using SMARTTALK were conducted through a
client computer connecting to the Raspberry Pi over a TCP
socket. The functionality of the robot was to move forward,
backward, turn left, turn right, and stop. Trials concluded that
the robot was controllable by using a variety of commands by
using our classification model. Some example commands are:
“Okay robot drive forward”, “Go forward”, “Stop moving”,
“I’d like you to turn right now”, and “Turn left”. Throughout
this interaction, SMARTTALK provided the link between the
robot’s functionality and natural language input, as well as the

Fig. 8: Custom-built test robot equipped with a Raspberry Pi
computer and Arduino microcontroller.



bring these bottles of percocet back to the lab deliver
take these pills and bring them to the patient in room 12 deliver

give bob his lunch, he is in room 6 deliver
go get the scissors from the nurse get

can you bring me the medicine from the lab get
go get the doctor, quickly get

listen to me note
I need you to remember this note

alright take a note note
go to the operating room and mop up the floor clean

clean up the OR clean
pick up the trash in the hallway clean
make sure the doors are locked secure

stop that man from running away secure
close that door and lock it secure

TABLE IV: Hospital robot testing data.

continuation of understanding the user’s intent by updating its
classification model with each successfully identified class.

V. CONCLUSIONS

This paper presented a learning-based framework for natural
language human-robot interaction called SMARTTALK. We
present the design and capabilities of the framework, and
present experimental evaluation of the classification system
and brief on-board robot trials. Current performance demon-
strate its utility by allowing non-expert users to communicate
with a robot and also enabling a robot to understand novel
instructions by engaging in interactive dialog with the user.

Future work will focus on deployment of SMARTTALK on a
variety of robots, including underwater robots, thus extending
our work to visual, gesture-based communication. We plan to
incorporate a risk-assessment framework with SMARTTALK to
provide another source for learning and differentiating between
potentially safe and unsafe commands preemptively. Ongoing
work is investigating approaches to couple interaction with
robot learning in a wider scale to minimize the disconnect
between a robot’s abilities and a human user’s abilities to
command a robot to perform tasks in arbitrary domains.
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