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Abstract 

Autonomous Underwater Vehicles (AUVs) have been in development in recent decades to 

address the difficulties and high costs of oceanic exploration, with applications including 

marine life monitoring, search and rescue operations, and wreck inspection. An underwater 

robot developed by the Interactive Robotics and Vision (IRV) Laboratory at the University 

of Minnesota is LoCO, a Low Cost Open-Source AUV. LoCO seeks to assist in a number 

of underwater applications while reducing the current high cost of entry into underwater 

robotics. One aspect of this underwater vehicle that is integral to its capacity as an AUV is 

the modeling of its dynamics, and each new AUV comes with unique geometries spanning 

various propulsion control methods for specializing in different underwater tasks. This 

thesis seeks to establish an underwater dynamic model for the robot, implement the model 

in a simulated setting so as to provide testing opportunities before field deployment, and 

compare the effectivity of the model to collected experimental data. This, in turn, will lead 

to the efficient development of its autonomous systems and capability to assist in 

underwater operations. Within this research, the dynamic models have been produced and 

geometry-dependent coefficients have been derived for LoCO. A simulator for the robot 

has also been developed that can interface with onboard software. Though the simulation 

agrees relatively well with experimental data collected for LoCO’s forward motion, there 

are still other motion modes that require further investigation. Overall, this dynamic 

foundation will provide for future control system and other autonomous development to 

further its underwater capabilities.  
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Chapter 1  

Introduction 

1.1. Background 

 Ocean exploration began in the late 19th century with the search for a greater 

understanding of how the Earth works and the life it holds. Since then, discoveries across 

the span of 71% of the Earth’s surface have yielded entirely new fields of study and 

revolutionary findings in areas such as geology, marine biology, and environmental 

science. However, the majority of Earth’s oceans remain unexplored, due in part to high 

resource and economic costs [1]. This, along with the quest to explore deep sea areas 

extremely difficult for humans to reach, has spurred the field of underwater robotics. 

Autonomous Underwater Vehicles (AUVs) have been in development in recent decades 

to address the high cost of underwater exploration. Other applications of these 

technologies include marine life monitoring, mineral exploration, global environment 

evaluation, wreck inspection, and search and rescue operations. The dynamic underwater 

environment comes with a host of new challenges though, ranging from navigation where 

GPS does not function to environments of operation prone to unpredictable disturbances 

[2]. An example of underwater robotics development for oceanography research can be 

found with the Seaglider [3], where the AUV is designed to operate for long periods of 

time to gather ocean data at a fraction of the cost of manned expeditions. Though 

research in underwater robotics has greatly progressed, the sensors and equipment 

required for accurate navigation and reliable operation in underwater environments often 

come at high costs. 
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1.2. LoCO Design 

 An AUV developed by the Interactive Robotics and Vision (IRV) Laboratory at 

the University of Minnesota is LoCO. LoCO AUV is a Low-Cost, Open-Source, 

Autonomous Underwater Vehicle. It is vision-guided and rated to a depth of 100 meters, 

capable of being deployed by a single person in the field [4]. A picture of LoCO in an 

ocean deployment can be seen below, along with the corresponding Computer Aided 

Design (CAD) model in SolidWorks. This underwater vehicle seeks to assist personnel in 

numerous underwater applications in a more cost-effective manner than previous robots. 

 
Figure 1:  LoCO in untethered deployment in the Caribbean Sea near Barbados [4]. 

 
Figure 2:  LoCO CAD model in SolidWorks. 
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 One aspect of LoCO that is integral to its capacity as an AUV is the modeling of 

its dynamics. For a reliable control system to be developed that enables autonomous 

operation, a foundation in the dynamics of the robot must be established. Though a 

number of studies have been conducted on the modeling of AUVs in an underwater 

environment [5], [6], and the governing equations for marine hydrodynamics have been 

established, each new AUV comes with unique geometries. Further, AUV designs boast 

various propulsion control methods for the underwater tasks they are primarily designed 

for. 

 

1.3. Thesis Objective 

 This thesis seeks to evaluate the known properties common to any underwater 

environment and apply foundational components to characterize the underwater 

dynamics of the LoCO AUV. Work is performed to implement these dynamics in a 

simulated environment, able to be integrated with onboard robot systems, in order to 

provide a mode of testing software before resource-costly field trials. Experimental 

testing data is compared to the simulation implementation of the dynamic model. These 

outcomes, in turn, will lead to the efficient development of future control systems to 

assist in underwater research including trash detection development, vision system 

development, and human-robot interaction research [7]. 

 



4 

 

1.4. Overview 

 The content discussed herein serves to first provide a foundation in the governing 

dynamics and various definitions for LoCO in Chapter 2. A number of assumptions are 

previewed before a brief description of the relation between dynamics derived in the 

frame of a rigid body and the corresponding motion in an inertial frame. The general 

dynamic equations for a 6-Degrees-of-Freedom (DoF) body are derived and associated 

forces for the underwater robot are discussed. Chapter 3 takes these general equations and 

describes the various estimation methods used to evaluate the coefficient parameters in 

the dynamic equations specific to the vehicle. A final list of estimated parameters is 

presented along with the resulting simplified dynamic equations. Chapter 4 discusses the 

simulation component of the thesis, including its program architecture and application of 

forces. Chapter 5 looks at how the simulation is utilized to compare the dynamic model to 

experimental data collected. Finally, Chapter 6 summarizes the thesis in conclusion of the 

work. 

  



5 

 

Chapter 2  

Derivation of Dynamic Equations 

2.1. Introduction 

 Before any specific dynamic estimates regarding LoCO can be made, the dynamic 

framework and general equations of motion must be derived. Though these derivations 

can be found in a number of texts [8]–[10], they are included within this thesis so that the 

document may be self-sufficient. Governing assumptions that are being made for this 

dynamic model will be explained in each of the appropriate sections, but are listed below 

as an overview [8]: 

1) The AUV can be treated as a rigid body of a constant mass. 

2) The earth’s rotation is negligible for acceleration components of the vehicle’s 

center of mass. 

3) The thrusters are assumed to be a constant source of thrust. 

4) The underwater vehicle is sufficiently submerged in an unbounded and ideal fluid. 

5) The AUV does not experience underwater currents. 

6) The AUV is assumed to not be a streamlined body due to external irregularities 

such as clamps. 

 

2.2. Body Frame Definition 

 There are often two frames of reference used in expressing the equations of 

motion for an underwater vehicle. One of these is a “body” coordinate frame, which is 

fixed to the body of the marine vehicle. It is beneficial in many other applications to 
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attach the origin of the coordinate system to the center of gravity of the vehicle. 

However, especially with a vehicle that can be modified such as LoCO, the center of 

gravity may change throughout the design cycle of the vehicle. Along with modeling 

benefits explained later regarding body-fixed origin placement along lines of symmetry, 

it is common to define the body-fixed coordinate frame origin at a location other than the 

center of gravity. The coordinate system for LoCO can be seen below in Fig. 3. In marine 

engineering, velocities in the x, y, and z directions are defined as surge (u), sway (v), and 

heave (w), respectively, with overall forces along the axes noted as X, Y, and Z. 

Similarly, angular velocities about those same axes are defined as roll (p), pitch (q), and 

yaw (r), respectively, with overall moments along the axes noted as K, M, and N. 

 

Figure 3:  LoCO body-fixed coordinate frame definition overall view. 
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Figure 4:  LoCO body-fixed coordinate frame definition section views. 

 

 As can be seen in Figs. 3 and 4, LoCO has geometric planes of symmetry about 

the x-z plane and x-y plane. For the case of this analysis, the body frame origin for LoCO 

is located at the intersection of these two planes and along the x axis to the back face of 

the rear end cap. This way, the characteristics of the robot can change with minimal 

effect to the dynamic framework of the thesis. More will be discussed on the force-

related advantages to this origin location as well. 
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2.3. Relationship Between Inertial and Body Coordinate Frames 

 The second frame used as reference for these equations of motion is an inertial 

frame that the underwater vehicle operates in. For this analysis, an Earth-fixed inertial 

system will be used called “NED”, or “North-East-Down” [10]. In this case, the x 

direction of the coordinate system points North, the y direction points East, and the z 

direction therefore points downwards. 

 Though much of this thesis is devoted to the analysis of motion and forces in the 

body-fixed frame defined above, for any mission with an underwater vehicle, it is critical 

to relate the state of the vehicle back to the overall frame of reference. A visual depiction 

of the relation between the Earth-fixed frame and the body-fixed frame is given below in 

Fig. 5. The position of the vehicle in relation to the Earth frame is often given in terms of 

XE, YE, and ZE, along their respective axes. The angle of rotation about each of these axes 

is denoted as ϕ, θ, and ψ, respectively. 

 

Figure 5:  Relationship between body frame and inertial frame. 
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 Euler angles give a way of relating the orientation of a rigid body in three-

dimensional space with reference to an original reference frame through three single-axis 

rotations. Though there are multiple possible conventions for achieving this, one example 

is the Euler “3-2-1”, or “Z-Y-X”, sequence. Each rotation is represented by a 3 x 3 

matrix, with the first rotation about the original z-axis by the yaw angle, denoted as 

Rz(ψ). Then, a rotation about the following y-axis by the pitch angle is performed, and 

finally a rotation about the following x-axis by the roll angle. More detail on these 

rotation matrices and Euler angles can be found in various sources such as [11], [12]. 

Overall, a final relationship between the velocity of the underwater vehicle in Earth frame 

coordinates and body frame coordinates can then be represented as 

 [
𝑢
𝑣
𝑤

] = 𝑅𝑥(𝜙)𝑅𝑦(θ)𝑅𝑧(ψ) [

𝑋�̇�

𝑌�̇�

𝑍�̇�

]  

= [

1 0 0
0 cos (𝜙) sin (𝜙)
0 −sin (𝜙) cos (𝜙)

] [
cos (𝜃) 0 −sin (𝜃)

0 1 0
sin (𝜃) 0 cos (𝜃)

] [
cos (𝜓) sin (𝜓) 0
−sin (𝜓) cos (𝜓) 0

0 0 1

] [

𝑋�̇�

𝑌�̇�

𝑍�̇�

] 

= [

cos (𝜃)cos (𝜓)

− sin(𝜓) cos(𝜙) + sin (𝜙)sin (𝜃)cos (𝜓)

sin(𝜙) sin(𝜓) + cos (𝜙)cos (𝜓)sin (𝜃)
… 

cos (𝜃)sin (𝜓)

cos(𝜙) cos(𝜓) + sin (𝜙)sin (𝜃)sin (𝜓)

− sin(𝜙) cos(𝜓) + cos (𝜙)sin (𝜃)sin (𝜓)
… 

 

−sin (𝜃)
sin (𝜙)cos (𝜃)
cos (𝜙)cos (𝜃)

] [

𝑋�̇�

𝑌�̇�

𝑍�̇�

]  (1) 
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 To achieve a similar transformation for angular velocities, each Euler angle 

derivative must be addressed separately since they are not independent orthogonal 

elements. So, 

 [
𝑝
𝑞
𝑟
] = 𝑅𝑥(ϕ)𝑅𝑦(θ)𝑅𝑧(ψ) [

0
0
�̇�

] + 𝑅𝑥(ϕ)𝑅𝑦(θ) [
0
�̇�
0
] + 𝑅𝑥(ϕ) [

�̇�
0
0

]  

 𝑝 = �̇� − sin (𝜃)�̇� (2a) 

 𝑞 = sin(𝜙) cos(𝜃) �̇� + 𝑐𝑜𝑠(𝜙)�̇� (2b) 

 𝑟 = cos (𝜙)cos (𝜃)�̇� − sin(𝜙)�̇� (2c) 

 One drawback of Euler angle representation of the motion of the vehicle is what is 

known as “gimbal lock”, or when there is a singularity in the equations of motion, such as 

that caused by a pitch value of 90 degrees. For the sake of expressing the relationships as 

most commonly used in marine dynamics, the resulting equations of motion as derived 

above hold their value since large pitch angles are usually avoided with submarines or 

other streamlined underwater vehicles [9]. An alternate way to express rotations are 

quaternions. Though they can be more complicated than expressions with Euler angles, 

they eliminate the issue with singularity and provide computationally easier ways to work 

with rotations. Quaternions, and how they are implemented in simulation, are discussed 

later. 

 

2.4. Rigid Body 6-Degrees of Freedom Equations of Motion 

 As given in the first two assumptions, the equations of motion for LoCO can be 

derived as those for a rigid body with constant mass and six degrees of freedom. The 
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following set of equations applies to a body-fixed coordinate frame in which the center of 

gravity is not necessarily the center of the coordinate system, derived within Newton-

Euler framework. This can be seen defined in Figs. 3 and 4 for LoCO, where the forces 

and moments of the following derivation are taken about the origin of the body system. 

 Beginning with an expression of Newton’s second law, the forces on the body are 

equivalent to the time derivative of linear momentum. When dealing with rotating 

coordinate frames inside an overall inertial frame, rotational effects on changes in 

momentum must be compensated for besides linear acceleration. This leads to 

 𝑭 =
𝑑

𝑑𝑡
(𝑚𝑼) = 𝑚 (�̇� + 𝝎 × 𝑼 + 𝜶 × 𝒓𝑮 + 𝝎 × (𝝎 × 𝒓𝑮)) (3) 

where bold notation indicates vectors, in which U is linear velocity of the vehicle origin, 

ω is the angular velocity of the body system, α is the angular acceleration, and rG is the 

position vector from the origin of the coordinate frame to the vehicle center of gravity. In 

this equation, the first term in the translational acceleration, the second is the Coriolis 

term, the third is the azimuthal acceleration, and the final term is the centripetal 

acceleration. 

 Now for the moments on the vehicle, the sum of these is equivalent to the time 

derivative of angular momentum. Similar to dealing with a rotating frame in equation 3, 

 𝑴 =
𝑑

𝑑𝑡
(𝑰𝝎) = 𝑰 ∙ 𝜶 + 𝝎 × (𝑰 ∙ 𝝎) + 𝑚 ∙ 𝒓𝑮 × (�̇� + 𝝎 × 𝑼) (4) 

where the same notation is used from equation 3, and I is the moment of inertia matrix 

for the body given with the matrix, 

 𝑰 = [

𝐼𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑦𝑥 𝐼𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧

] (5) 
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 More in-depth derivations of these equations of motion can be found in sources 

such as [8]–[10]. Evaluating equation 3 for the axial force, lateral force, and vertical force 

equations, 

 𝑋 = 𝑚(�̇� − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝐺(𝑞2 + 𝑟2) + 𝑦𝐺(𝑝𝑞 − �̇�) + 𝑧𝐺(𝑝𝑟 − �̇�)) (6a) 

 𝑌 = 𝑚(�̇� − 𝑤𝑝 + 𝑢𝑟 + 𝑥𝐺(𝑞𝑝 + �̇�) − 𝑦𝐺(𝑟2 + 𝑝2) + 𝑧𝐺(𝑞𝑟 − �̇�)) (6b) 

 𝑍 = 𝑚(�̇� − 𝑢𝑞 + 𝑣𝑝 + 𝑥𝐺(𝑟𝑝 − �̇�) + 𝑦𝐺(𝑟𝑞 + �̇�) − 𝑧𝐺(𝑝2 + 𝑞2)) (6c) 

 Evaluating equation 4 for the moment about the roll moment, pitch moment, and 

yaw moment,  

 𝐾 = 𝐼𝑥�̇� + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟 − (�̇� + 𝑝𝑞)𝐼𝑥𝑧 + (𝑟2 − 𝑞2)𝐼𝑦𝑧 + (𝑝𝑟 − �̇�)𝐼𝑥𝑦 … 

 + 𝑚(𝑦𝐺(�̇� − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝐺(�̇� − 𝑤𝑝 + 𝑢𝑟)) (6d) 

 𝑀 = 𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑟𝑝 − (�̇� + 𝑞𝑟)𝐼𝑥𝑦 + (𝑝2 − 𝑟2)𝐼𝑥𝑧 + (𝑞𝑝 − �̇�)𝐼𝑦𝑧 … 

 + 𝑚(𝑧𝐺(�̇� − 𝑣𝑟 + 𝑤𝑞) − 𝑥𝐺(�̇� − 𝑢𝑞 + 𝑣𝑝)) (6e) 

 𝑁 = 𝐼𝑧�̇� + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞 − (�̇� + 𝑟𝑝)𝐼𝑦𝑧 + (𝑞2 − 𝑝2)𝐼𝑥𝑦 + (𝑟𝑞 − �̇�)𝐼𝑥𝑧 … 

 + 𝑚(𝑥𝐺(�̇� − 𝑤𝑝 + 𝑢𝑟) − 𝑦𝐺(�̇� − 𝑣𝑟 + 𝑤𝑞)) (6f) 

 

2.5. Forces and Moments 

2.5.1. Environmental Forces 

 One of the primary assumptions for this dynamic analysis lies with the 

environmental forces. In a full seakeeping analysis of an underwater vehicle, surface 

effects, radiation-induced damping, and other wave effects are taken into account. These 

variables can come to be very dependent upon the situation involved for the vehicle. 

Since LoCO is designed to operate in a range of environments, these wave-dependent 
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effects and surface effects are ignored with the assumption that the AUV is sufficiently 

submerged underwater. 

 

2.5.2. Propulsion 

 The propulsion for LoCO is governed with three thrusters. The rear port and 

starboard thrusters control movement in the horizontal plane, while the vertical thruster 

adds control in the vertical plane. Each thruster is referred to as “port”, “stbd”, and 

“fore”, respectively. One assumption regarding the analysis with the thrusters is that they 

act as point forces at the center of the thruster propellers. Though the actual thrusters 

have inherent propeller dynamics, the point force simplification has been made for this 

analysis as a reasonable approximation. As for the reaction torques of each thruster, the 

port and starboard thrusters have propellers that provide the same forward thrust while 

spinning in opposite directions, so the moments cancel each other. It also assumed that 

the moment produced by the force thruster is negligible with respect to the larger vehicle 

dynamics and is ignored. With this, the forces and moments created by the thrusters can 

be expressed with the same conventions as established in section 2.4. 

 𝑋𝑃 = 𝑇𝑝𝑜𝑟𝑡 + 𝑇𝑠𝑡𝑏𝑑 (7a) 

 𝑌𝑃 = 0 (7b) 

 𝑍𝑃 = 𝑇𝑓𝑜𝑟𝑒 (7c) 

 𝐾𝑃 = 0 (7d) 

 𝑀𝑃 = −𝑇𝑓𝑜𝑟𝑒 𝑥𝑓𝑜𝑟𝑒 (7e) 

 𝑁𝑃 = −𝑇𝑝𝑜𝑟𝑡 𝑦𝑝𝑜𝑟𝑡 − 𝑇𝑠𝑡𝑏𝑑  𝑦𝑠𝑡𝑏𝑑 (7f) 
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2.5.3. Restoring Forces 

 The gravity and buoyancy forces acting on an underwater vehicle are known as 

the restoring forces. To create a stable underwater vehicle, it is generally desired that the 

center of buoyancy and center of gravity are located at the same x and y positions with 

respect to the origin, and with the center of gravity lying below the center of buoyancy. 

This way, rotation of the vehicle from its resting state causes a corrective “restoring” 

moment to be applied to the vehicle. As derived in more detail in [10], these resulting 

forces and moments can be expressed as 

 𝑋𝑅 = −(𝑊 − 𝐵)sin (𝜃) (8a) 

 𝑌𝑅 = (𝑊 − 𝐵)cos (𝜃)sin (𝜙) (8b) 

 𝑍𝑅 = (𝑊 − 𝐵)cos (𝜃)cos (𝜙) (8c) 

 𝐾𝑅 = (𝑦𝐺𝑊 − 𝑦𝐵𝐵) cos(𝜃) cos(𝜙) − (𝑧𝐺𝑊 − 𝑧𝐵𝐵) cos(𝜃) sin(𝜙) (8d) 

 𝑀𝑅 = −(𝑥𝐺𝑊 − 𝑥𝐵𝐵) cos(𝜃) cos(𝜙) − (𝑧𝐺𝑊 − 𝑧𝐵𝐵) sin(𝜃) (8e) 

 𝑁𝑅 = (𝑥𝐺𝑊 − 𝑥𝐵𝐵) cos(𝜃) sin(𝜙) − (𝑦𝐺𝑊 − 𝑦𝐵𝐵) sin(𝜃) (8f) 

where W represents the dry weight of the AUV, and B is the buoyancy force. 

 

2.5.4. Added Mass 

 As a rigid body moves through a fluid, there are pressure-induced forces separate 

from drag associated with how the body is required to accelerate the surrounding fluid 

during unsteady motion. This is called “added mass” and is a function of the geometry of 

the vehicle. Though these parameters are typically ignored in aerial applications due to 

the low density of air, they must be accounted for in underwater analyses since the 
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density of the fluid is much higher and on the same order as that of the rigid body. The 

forces and moments are expressed as described in [13] 

 𝐹𝑗 = −�̇�𝑖𝑚𝑖𝑗 − 𝜀𝑗𝑘𝑙𝑈𝑖𝜔𝑘𝑚𝑙𝑖 (9a) 

 𝑀𝑗 = −�̇�𝑖𝑚𝑗+3,𝑖 − 𝜀𝑗𝑘𝑙𝑈𝑖𝜔𝑘𝑚𝑙+3,𝑖 − 𝜀𝑗𝑘𝑙𝑈𝑘𝑈𝑖𝑚𝑙𝑖 (9b) 

where j denotes the direction of the force, i=1, 2, 3, 4, 5, 6 and j, k, l = 1, 2, 3. εjkl is the 

alternating tensor where 

 𝜀𝑗𝑘𝑙 = {

0;  if any pair of the indices j, k, l are equal
1;                             if j, k, l are in cyclic order
−1;             if j, k, l are in anti − cyclic order

 (10) 

 The overall effect of this added mass is more commonly condensed into an 

symmetrical added mass or inertia matrix using Society of Naval Architects and Marine 

Engineers (SNAME) notation [14] as 

 𝑀𝐴 =

[
 
 
 
 
 
 
𝑋�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑍�̇� 𝑍�̇� 𝑍�̇�

𝑋�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑍�̇� 𝑍�̇� 𝑍�̇�

𝐾�̇� 𝐾�̇� 𝐾�̇�

𝑀�̇� 𝑀�̇� 𝑀�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇�

𝐾�̇� 𝐾�̇� 𝐾�̇�

𝑀�̇� 𝑀�̇� 𝑀�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇� ]
 
 
 
 
 
 

 (11) 

 Overall, the expanded equations for forces and moments on the rigid body due to 

the added mass terms can be expressed as derived by Imlay [15], 

𝑋𝐴 = 𝑋�̇��̇� + 𝑋�̇�(�̇� + 𝑢𝑞) + 𝑋�̇��̇� + 𝑍�̇�𝑤𝑞 + 𝑍�̇�𝑞
2 

 +𝑋�̇��̇� + 𝑋�̇��̇� + 𝑋�̇��̇� − 𝑌�̇�𝑣𝑟 − 𝑌�̇�𝑟𝑝 − 𝑌�̇�𝑟
2 

 −𝑋�̇�𝑢𝑟 − 𝑌�̇�𝑤𝑟 

 +𝑌�̇�𝑣𝑞 + 𝑍�̇�𝑝𝑞 − (𝑌�̇� − 𝑍�̇�)𝑞𝑟 (12a) 
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𝑌𝐴 = 𝑋�̇��̇� + 𝑌�̇��̇� + 𝑌�̇��̇� 

 +𝑌�̇��̇� + 𝑌�̇��̇� + 𝑌�̇��̇� + 𝑋�̇�𝑣𝑟 − 𝑌�̇�𝑣𝑝 + 𝑋�̇�𝑟
2 + (𝑋�̇� − 𝑍�̇�)𝑟𝑝 − 𝑍�̇�𝑝2 

 −𝑋�̇�(𝑢𝑝 − 𝑤𝑟) + 𝑋�̇�𝑢𝑟 − 𝑍�̇�𝑤𝑝 

 −𝑍�̇�𝑝𝑞 + 𝑋�̇�𝑞𝑟 (12b) 

𝑍𝐴 = 𝑋�̇�(�̇� − 𝑤𝑞) + 𝑍�̇��̇� + 𝑍�̇��̇� − 𝑋�̇�𝑢𝑞 − 𝑋�̇�𝑞
2 

 +𝑌�̇��̇� + 𝑍�̇��̇� + 𝑍�̇��̇� + 𝑌�̇�𝑣𝑝 + 𝑌�̇�𝑟𝑝 + 𝑌�̇�𝑝2 

 +𝑋�̇�𝑢𝑝 + 𝑌�̇�𝑤𝑝 

 −𝑋�̇�𝑣𝑞 − (𝑋�̇� − 𝑌�̇�)𝑝𝑞 − 𝑋�̇�𝑞𝑟 (12c) 

𝐾𝐴 = 𝑋�̇��̇� + 𝑍�̇��̇� + 𝐾�̇��̇� − 𝑋�̇�𝑤𝑢 + 𝑋�̇�𝑢𝑞 − 𝑌�̇�𝑤2 − (𝑌�̇� − 𝑍�̇�)𝑤𝑞 + 𝑀�̇�𝑞
2 

 +𝑌�̇��̇� + 𝐾�̇��̇� + 𝐾�̇��̇� + 𝑌�̇�𝑣2 − (𝑌�̇� − 𝑍�̇�)𝑣𝑟 + 𝑍�̇�𝑣𝑝 − 𝑀�̇�𝑟
2 − 𝐾�̇�𝑟𝑝 

 +𝑋�̇�𝑢𝑣 − (𝑌�̇� − 𝑍�̇�)𝑣𝑤 − (𝑌�̇� + 𝑍�̇�)𝑤𝑟 − 𝑌�̇�𝑤𝑝 − 𝑋�̇�𝑢𝑟 

 +(𝑌�̇� + 𝑍�̇�)𝑣𝑞 + 𝐾�̇�𝑝𝑞 − (𝑀�̇� − 𝑁�̇�)𝑞𝑟 (12d) 

𝑀𝐴 = 𝑋�̇�(�̇� + 𝑤𝑞) + 𝑍�̇�(�̇� − 𝑢𝑞) + 𝑀�̇��̇� − 𝑋�̇�(𝑢2 − 𝑤2) − (𝑍�̇� − 𝑋�̇�)𝑤𝑢 

 +𝑌�̇��̇� + 𝐾�̇��̇� + 𝑀�̇��̇� + 𝑌�̇�𝑣𝑟 − 𝑌�̇�𝑣𝑝 − 𝐾�̇�(𝑝
2 − 𝑟2) + (𝐾�̇� − 𝑁�̇�)𝑟𝑝 

 −𝑌�̇�𝑢𝑣 + 𝑋�̇�𝑣𝑤 − (𝑋�̇� + 𝑍�̇�)(𝑢𝑝 − 𝑤𝑟) + (𝑋�̇� − 𝑍�̇�)(𝑤𝑝 + 𝑢𝑟) 

 −𝑀�̇�𝑝𝑞 + 𝐾�̇�𝑞𝑟 (12e) 

𝑁𝐴 = 𝑋�̇��̇� + 𝑍�̇��̇� + 𝑀�̇��̇� + 𝑋�̇�𝑢
2 + 𝑌�̇�𝑤𝑢 − (𝑋�̇� − 𝑌�̇�)𝑢𝑞 − 𝑍�̇�𝑤𝑞 − 𝐾�̇�𝑞

2 

 +𝑌�̇��̇� + 𝐾�̇��̇� + 𝑁�̇��̇� − 𝑋�̇�𝑣
2 − 𝑋�̇�𝑣𝑟 − (𝑋�̇� − 𝑌�̇�)𝑣𝑝 + 𝑀�̇�𝑟𝑝 + 𝐾�̇�𝑝

2 

 −(𝑋�̇� − 𝑌�̇�)𝑢𝑣 − 𝑋�̇�𝑣𝑤 + (𝑋�̇� + 𝑌�̇�)𝑢𝑝 + 𝑌�̇�𝑢𝑟 + 𝑍�̇�𝑤𝑝 

 −(𝑋�̇� + 𝑌�̇�)𝑣𝑞 − (𝐾�̇� − 𝑀�̇�)𝑝𝑞 − 𝐾�̇�𝑞𝑟 (12f) 
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 The equations were formatted by Imlay [15] so that the longitudinal components 

are on the first line, lateral components are on the second line, mixed terms involving u or 

w are on the third line, and mixed second order terms that are sometimes neglected are 

placed on the fourth line. 

 

2.5.5. Hydrodynamic Damping 

 The final set of forces being considered in this analysis is the hydrodynamic 

damping forces. The main damping force is the viscous damping force due to vortex 

shedding, given by the general equation 

 𝐹𝐷 = −
1

2
𝜌𝐶𝐷(𝑅𝑛)𝐴|𝑢|𝑢 (13) 

where ρ is the fluid density, CD is the coefficient of drag that is dependent upon the 

Reynolds number, Rn, A is the corresponding reference area to the applied coefficient of 

drag, and u is the velocity of the vehicle. The equation for the Reynolds number of a 

given geometry is 

 𝑅𝑛 =
𝑢𝐷

𝜈
 (14) 

where D is the characteristic length of the geometry and 𝜈 (“nu”, not “v”) is the kinematic 

viscosity for the surrounding fluid [16]. 

 The drag on a body rotating in a fluid can be related to the linear damping using 

the following equation 

 𝜔 ∙ 𝑟 = 𝑢 (15) 

where ω is the instantaneous angular velocity of the rotating body, and r is the distance 

from the axis of rotation to a specific cross section of the body. In this case, the 
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corresponding linear force would be multiplied by that same distance from the axis of 

rotation to obtain the moment. This moment arm must be integrated due to the face that 

each successive cross section of a body with a given damping coefficient may lie a 

different distance away from the axis of rotation. 

 Overall, the drag moment can be approximated as 

 𝑀𝐷 = ∫(𝐹𝐷 ⊥ 𝑟) = −
1

2
𝜌𝐶𝐷(𝑅𝑛) ∫ (𝑏 ∙ 𝑑𝑟) ∙ |𝜔 ∙ 𝑟| ∙ (𝜔 ∙ 𝑟)

𝑟2

𝑟1
∙ 𝑟 

 = −
1

2
𝜌𝐶𝐷(𝑅𝑛)𝑏|𝜔|𝜔 ∙ ∫ 𝑟2|𝑟|𝑑𝑟

𝑟2

𝑟1
 (16) 

where the variable “b” is introduced to represent the reference area length of each 

successive cross section that is parallel to the axis of rotation. An example of this is given 

in the diagram below in Fig. 6 for a rectangular prism of square cross section being 

rotated about its end. It should be noted that some of the general dynamics nomenclature 

when addressing damping equations overlaps with that addressing the other marine 

dynamics nomenclature, such as “r”. The notation with hydrodynamic damping can be 

considered isolated from other nomenclature unless specifically noted in the text. 

 

Figure 6:  Example of notation for rectangular prism of square cross section rotating 

about one end (rotation about the dashed line). 

 Where the damping due to vortex shedding, or pressure drag, often uses the 

reference area of the body perpendicular to the flow, nonlinear skin friction across the 



19 

 

surface area of the vehicle is also taken into account. This is notated with a skin friction 

coefficient of drag using equation 13, with CF instead of CD. There can also be lift forces 

associated with vortex shedding, especially with streamlined bodies or ones generally 

shaped as airfoils [16]. With the many irregularities on LoCO’s surface, it is generally not 

being considered a streamlined body and it is assumed that any lift forces generated by 

the vehicle are negligible in comparison to drag forces. 

 The non-velocity terms are typically condensed into a single coefficient, with the 

subscript indicating the direction of motion causing the force. Also due to asymmetry, 

there will be a net pitching moment generated by linear movement in the vertical 

direction, and a net yawing moment generated by linear movement in the lateral 

direction. Overall, the expanded equations for forces and moments on the rigid body due 

to the hydrodynamic damping terms [17] can be expressed as 

 𝑋𝐷 = 𝑋𝑢|𝑢|𝑢|𝑢| (17a) 

 𝑌𝐷 = 𝑌𝑣|𝑣|𝑣|𝑣| (17b) 

 𝑍𝐷 = 𝑍𝑤|𝑤|𝑤|𝑤| (17c) 

 𝐾𝐷 = 𝐾𝑝|𝑝|𝑝|𝑝| (17d) 

 𝑀𝐷 = 𝑀𝑞|𝑞|𝑞|𝑞|+𝑀𝑤|𝑤|𝑤|𝑤| (17e) 

 𝑁𝐷 = 𝑁𝑟|𝑟|𝑟|𝑟|+𝑁𝑣|𝑣|𝑣|𝑣| (17f) 

 

2.6. Overall Kinetics Equations 

 Tying together each of the force and moment components acting on the AUV, 

 𝑋 = 𝑋𝑃 + 𝑋𝑅 + 𝑋𝐷 − 𝑋𝐴 (18a) 
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 𝑌 = 𝑌𝑃 + 𝑌𝑅 + 𝑌𝐷 − 𝑌𝐴 (18b) 

 𝑍 = 𝑍𝑃 + 𝑍𝑅 + 𝑍𝐷 − 𝑍𝐴 (18c) 

 𝐾 = 𝐾𝑃 + 𝐾𝑅 + 𝐾𝐷 − 𝐾𝐴 (18d) 

 𝑀 = 𝑀𝑃 + 𝑀𝑅 + 𝑀𝐷 − 𝑀𝐴 (18e) 

 𝑁 = 𝑁𝑃 + 𝑁𝑅 + 𝑁𝐷 − 𝑁𝐴 (18f) 

 

2.7. Conclusion 

 In this chapter, a body-fixed reference frame is defined for the underwater vehicle 

and parameters for motion along these body axes are related back to the overall inertial 

frame. The 6-degrees-of-freedom equations of motion for such a rigid body are listed. 

External force and moment equations are addressed for environmental forces, propulsion, 

restoring forces, added mass, and drag. Assumptions being applied to the dynamic 

analysis of LoCO are explained with the corresponding type of external force.  
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Chapter 3  

Estimation of LoCO Dynamic Parameters 

3.1. Introduction 

 Now that the governing dynamic equations have been established for LoCO, the 

various constants related to the underwater vehicle must be determined. The general 

derivation of each parameter is given in each section, but in an effort to maintain the most 

accurate approximations possible, most simplifying assumptions are left to the end of 

each section in order to validate those assumptions. A majority of the external and 

internal components of LoCO are modeled in a Computer-Aided Design (CAD) program 

called SolidWorks. Ballasting is excluded from this modeling. Overall, a combination of 

physical measurements, analytical formulas, and SolidWorks measurements are used to 

estimate these parameters. 

 

3.2. Buoyancy 

 One of the foundational parameters for an underwater vehicle is its buoyancy. The 

overall buoyancy is determined as the equivalent weight of fluid that is occupied by the 

vehicle when underwater. The density of water is assumed to be approximately 1000 

kg/m3 throughout the estimation of parameters. Gravity is assumed to be 9.80665 m/s2 

throughout the estimation as well. Also, the center of buoyancy needs to be calculated in 

relation to the body frame origin. For a composite body such as LoCO, this is done by 

using the center of buoyancy and volume of each component 
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 𝑪𝑩 =
∑ 𝑪𝑩𝑖∙𝑉𝑖

𝑛
𝑖=1

∑ ∙𝑉𝑖
𝑛
𝑖=1

 (19) 

where CB denotes the center of buoyancy position vector, V is the volume, and the 

summations are taken for each contributing component of LoCO. 

 A comprehensive table of components with their corresponding center of 

buoyancy and volume used to equate the overall buoyancy for the vehicle can be found in 

Table 9 in Appendix A. For simple shapes like the main tubes or the tube penetrators 

approximated as solid cylinders, the volume and center of buoyancy were determined 

analytically according to their positions in the CAD model. For more complicated shapes 

such as the clamp connectors or the thrusters, the SolidWorks Mass Analysis tool allows 

for an automated computation of total volume and center of buoyancy. The center of 

buoyancy in this case is equivalent to the center of gravity of the object assuming 

constant density, which is valid since the geometries are displacing a fluid of constant 

density. Overall, Table 1 below gives the summary of this analysis. 

Parameter Description Variable Value Units 

Water Density ρ 1000 kg/m3 

Vehicle Displacement Volume V 0.012545 m3 

Buoyancy Force B 123.02 N 

Center of Buoyancy 

CBx 0.2417 m 

CBy -4.836E-09 m 

CBz 5.166E-05 m 

 

Table 1:  Vehicle buoyancy analysis summary. 

 

 For the purpose of simplifying the governing dynamic equation for LoCO, the 

small values for the y and z positions of the center of buoyancy can be assumed to be 0 

from this analysis. 
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3.3. Mass and Moments of Inertia 

 Next, the mass and moments of inertia for LoCO must be approximated. The 

moments of inertia and center of mass location for LoCO are calculated based on placing 

the body-fixed coordinate frame origin centrally between the rear faces of each tube as 

described in section 2.2. To accomplish this, the same previous component matrix 

comprised of 67 items is used and can be found in Table 9 of Appendix A. 

 Where possible, such as with the Pixhawk inertial measurement unit, Blue 

Robotics components, and the batteries, component masses were obtained from vendor 

sites. For the polycarbonate tubes, 3D-printed components, and ballast weights, manual 

mass measurements were taken. Due to their relatively insignificant masses, 3D-printed 

components smaller than the clamp connectors bridging the two polycarbonate tubes 

were neglected. With how LoCO is manually ballasted in order to maintain neutral 

buoyancy with the equipment currently onboard and checked with each field deployment, 

the location and number of ballasts are not maintained within the CAD model. Though 

not displayed, the ballasts are still taken into account and listed in the component matrix. 

Other items assumed to be negligible relative to the overall mass of the vehicle are the 

cameras, electrical wires and connections, the reed switch, bolts, and nuts. The mass for 

each medium-density fiber mounting board was approximated based on its volume 

obtained from the SolidWorks Mass Analysis tool and an average density of the material 

[18]. The mass approximation for each penetrator was made similarly based on their 

volume and the density of Aluminum T6061 [19]. 

 For geometric approximations of center of gravity and moments of inertia, the 

batteries, ballast weights, and internal computational and power components are 



24 

 

approximated as rectangular prisms. The tubes and tube clamp sets are approximated as 

hollow cylinders. The moments of inertia for these two shapes are given in the diagram 

below in Fig. 7 [20]. For the remaining components of more complex geometries, the 

SolidWorks Mass Analysis tool is used to compute the center of gravity and moments of 

inertia of each component assuming constant density.  

 

 

        
 

 

Hollow Cylinder 

 

𝐼𝑍 = 1/2 𝑚 (𝑟1
2  + 𝑟2

2)  (20a) 

𝐼𝑋 = 𝐼𝑌 = 1/12 𝑚 (3(𝑟1
2  + 𝑟2

2) + ℎ2) (20b) 

 

where r1 is inner radius, r2 is outer radius, 

and h is height. 

Rectangular Prism 

 

𝐼𝑑 = 1/12 𝑚 (ℎ2 + 𝑤2)  (21) 

 

 

 

Figure 7:  Moments of inertia for hollow cylinder and rectangular prism [20]. 

 

 To determine the composite moments of inertia for the underwater vehicle, the 

moments of inertia for each component are required to be translated into the body-fixed 

coordinate frame. This can be done using the parallel-axis theorem for moments of 

inertia. An example of this for translating these component inertias into the body frame 

so they can be summed into the total vehicle moments of inertia are given below. 

  

Y 

Z 
X 

h 

r1 

r2 

d 

w 
h 
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 𝐼𝑌′ = 𝐼𝑌 + 𝑚 ∙ 𝑑2 (22) 

 

Figure 8:  Parallel axis theorem example, where m is mass of the object. 

 Similar to the buoyancy analysis, the full component matrix is not included 

directly in the text, but a summary of results is given below in Table 2. 

Parameter Description Variable Value Units 

Mass m 12.320 kg 

Weight W 120.82 N 

Center of Gravity 

CGx 0.2538 m 

CGy 0.0010191 m 

CGz 0.002130 m 

Moments of Inertia 

Ix 0.19094 kg m2 

Iy 1.2050 kg m2 

Iz 1.3465 kg m2 

Ixy 0.002257 kg m2 

Iyz -0.0002695 kg m2 

Ixz 0.005911 kg m2 

 

Table 2:  Vehicle mass and moments of inertia analysis summary. 

 

 

 The results of this analysis serve to validate a number of dynamic assumptions. 

The estimated weight of the vehicle is only approximately 2 N less than the buoyancy 

force. For a neutrally buoyant vehicle where theoretically, these values are equal, this 

shows that the components ignored in the mass analysis were indeed negligible. For the 

center of gravity estimate, relative to the center of buoyancy calculated in the previous 

analysis, the center of gravity is shifted by approximately 1 cm in the x direction, 1 mm 

IY d 

Y’ 
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in the y direction, and 2 mm in the z direction. As mentioned in Chapter 2, it is often 

desired to design and ballast underwater vehicles so that the center of buoyancy is located 

directly above the center of gravity when the vehicle is in a stationary horizontal, flat 

position. The mass analysis appears to corroborate this desired stability design in LoCO 

as well. Since the displacements from the center of buoyancy are so small relative to the 

overall vehicle, and it has been observed in field trials that LoCO does maintain a stable, 

flat position in water, it can be approximated that the center of gravity is equal to the 

established center of buoyancy that is likely to be much more accurate than the sum of 

mass approximations. 

 For the moments of inertia of the vehicle, the moment of inertia in the x direction 

is lower than the other principal moments of inertia as expected due to the more 

elongated nature of LoCO’s design. From the location of the coordinate frame origin, 

there is an observable geometric symmetry in the x-z and x-y planes. With the design and 

ballasting of LoCO, if the symmetries were to hold true for the mass distribution of the 

vehicle, the products of inertia would all be equal to 0. Due to the small values of the 

products of inertia, this can be assumed the case for LoCO and further simplifies the 

governing dynamic equations. 

 

3.4. Added Mass Coefficients 

 For surface vessels and more complex analyses of ship dynamics, the estimation 

of added mass parameters for vehicles is done using computational methods. If solving 

for added mass analytically such as in this thesis, the two most common ways of doing 

this are approximating the shape of the underwater vehicle as an ellipsoid or using a 
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method known as “strip theory”. Strip theory employs the use of solutions for the added 

mass of 2-dimensional shapes and integrates the results into three dimensions. This 

section on added mass uses external computational findings and strip theory to 

approximate the added mass coefficients for LoCO. 

 Analytical estimation of these parameters requires a simplification of the 

underwater vehicle geometry. Overall, the geometries included are for the tubes, 

thrusters, clamp connectors, and backbone. Three different models were created for 

assessing the added mass of the vehicle since in certain directions of motion, certain 

components are removed. These approximations are done in order to best approximate 

and not over-estimate the added mass of the vehicle, as each added mass approximation 

is technically that of an independent three-dimensional object. For example, in forward 

motion, the forward clamp connector resides in the wake of the fluid flowing over the 

vertical thruster and not in an open fluid, so its actual contribution to added mass is 

assumed to be negligible. The geometric approximations for each linear direction of 

travel are given below in Figs. 9-11. 
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Figure 9:  Geometric approximation for LoCO flow in x-direction – “X-Model”. 

 

Figure 10:  Geometric approximation for LoCO flow in y-direction – “Y-Model”. 
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Figure 11:  Geometric approximation for LoCO flow in z-direction – “Z-Model”. 

Component Variable 

Port Tube 
tube 

Starboard Tube 

Port Thruster 
aft_thruster 

Starboard Thruster 

Fore Thruster fore_thruster 

Fore Clamp Connector fore_connector 

Aft Clamp Connector aft_connector 

Regular Backbone backbone 

Long Backbone long_backbone 

Rear Strut strut 

Left Strut Side Block 
strut_side 

Right Strut Side Block 

Left Clamp Connector 

Side Block 
clamp_side 

Right Clamp Connector 

Side Block 

 

Table 3:  Table of components and corresponding variable names for geometric LoCO 

models. 

 

 Beginning with specifics for the added mass of the vehicle, the two types of cross 

sections involved in the models are circles and squares. The added mass components for 



30 

 

these shapes in 2D are readily available in sources such as [13], [21] and are given in the 

diagram below in Fig. 12.  

 

 

        

 

 

 

 

Circle 

 

𝑎22 = 𝑎33 = 𝜋𝜌𝑟2  (23a) 

𝑎44 = 0 (23b) 

 

where ρ is the surrounding fluid density. 

Square 

 

𝑎22 = 𝑎33 = 1.51𝜌𝜋𝑎2  (24a) 

𝑎44 = 0.234𝜌𝜋𝑎4 (24b) 

 

where ρ is the surrounding fluid density. 

 

Figure 12:  Added mass parameters for a circle and a square [13], [21]. 

 

 Using SNAME’s Principles of Naval Architecture [14], [22] notation for added 

mass, for a 3D object, the symmetric added mass matrix previously established can also 

be notated as 

 

[
 
 
 
 
 
 
𝑋�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑍�̇� 𝑍�̇� 𝑍�̇�

𝑋�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑍�̇� 𝑍�̇� 𝑍�̇�

𝐾�̇� 𝐾�̇� 𝐾�̇�

𝑀�̇� 𝑀�̇� 𝑀�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇�

𝐾�̇� 𝐾�̇� 𝐾�̇�

𝑀�̇� 𝑀�̇� 𝑀�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇� ]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

𝐴14 𝐴15 𝐴13

𝐴24 𝐴25 𝐴26

𝐴34 𝐴35 𝐴36

𝐴41 𝐴42 𝐴43

𝐴51 𝐴52 𝐴53

𝐴61 𝐴62 𝐴63

𝐴44 𝐴45 𝐴46

𝐴54 𝐴55 𝐴56

𝐴64 𝐴65 𝐴66]
 
 
 
 
 

 (25) 

where the first subscript denotes the direction of the added mass, and the second subscript 

denotes the motion direction causing that added mass. In order to first decrease the scope 

of the analysis, some important simplifications can be made. It has already been 

established that LoCO has planes of symmetry in the x-z plane and the x-y plane. This 

allows many of the off-diagonal elements to be set to 0: 

3 

2 

4 
3 

2 

4 

2a 
r 
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 𝑀𝐴 =

[
 
 
 
 
 
 
𝑋�̇� 0 0
0 𝑌�̇� 0
0 0 𝑍�̇�

0 0 0
0 0 𝑌�̇�

0 𝑍�̇� 0

0 0 0
0 0 𝑀�̇�

0 𝑁�̇� 0

𝐾�̇� 0 0

0 𝑀�̇� 0

0 0 𝑁�̇�]
 
 
 
 
 
 

 (26) 

 Again from the Principles of Naval Architecture [22], these 3D coefficients can 

be obtained from the 2D added mass parameters integrated over the length of the object, 

 𝐴11 = ∫𝑎11 𝑑𝑥 (27a) 

 𝐴22 = ∫𝑎22 𝑑𝑥 (27b) 

 𝐴33 = ∫𝑎33 𝑑𝑥 (27c) 

 𝐴44 = ∫𝑎44 𝑑𝑥 (27d) 

 𝐴55 = ∫𝑥2 𝑎33 𝑑𝑥 (27e) 

 𝐴66 = ∫𝑥2 𝑎22 𝑑𝑥 (27f) 

 𝐴26 = 𝐴62 = ∫𝑥 𝑎22 𝑑𝑥 (27g) 

 𝐴35 = 𝐴53 = −∫𝑥 𝑎33 𝑑𝑥 (27h) 

 Though strip theory makes evaluating added mass parameters in cross flow 

possible, axial flow against these cross sections does not have the same sort of available 

solutions. One way of estimating this axial added mass due to acceleration along the 

same axis is using the approximation for a streamlined body, where such an added mass 

is approximately 5 to 10 percent of the mass of the displaced fluid. However, LoCO 

cannot necessarily be assumed to be a streamlined body, especially taking the individual 

added mass of each thruster into account where those cylinder approximations are more 

related to a bluff body. 
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 A solution to this is provided in [23]. In the thesis, computational simulations are 

performed for various cylinder geometries is axial flow to investigate the added mass of 

each shape. Equation 5.2 in this paper provides a regression line equation fitting data for 

cylinders with length over diameter ratios from approximately 0.025 to 4. Adapting the 

notation to match this thesis, 

 𝑋�̇� = 𝐴11 = 0.57 (
𝐻

𝐷
)
−0.93

∙ 𝜌𝑉 (28) 

where H is the height of the cylinder, D is the diameter, ρ is the surrounding fluid density, 

and V is the volume of the cylinder. Also according to [21], a reasonable estimate for the 

added mass of a square cross section is with a circle cross section where the diameter is 

approximately 1.224 times the side length so that it effectively “rounds out” the square. 

 Now that the general form for added mass coefficients has been established, the 

models for LoCO can begin to be analyzed. First for the surge added mass coefficient due 

to surge acceleration based on the X-Model, 

 𝑋�̇� = 𝐴11 = 𝜌 ∙ ((2 ∙ 0.57 (
𝐻𝑡𝑢𝑏𝑒

𝐷𝑡𝑢𝑏𝑒
)
−0.93

𝑉𝑡𝑢𝑏𝑒)… 

+(2 ∙ 0.57 (
𝐻𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

𝐷𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
)

−0.93

𝑉𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟)… 

 +(0.57 (
𝐻𝑙𝑜𝑛𝑔_𝑏𝑎𝑐𝑘

1.2244∙𝐷𝑙𝑜𝑛𝑔_𝑏𝑎𝑐𝑘
)
−0.93

𝑉𝑙𝑜𝑛𝑔_𝑏𝑎𝑐𝑘) + (2 ∙
1.51𝜋

4
 ∙ 𝑉𝑐𝑙𝑎𝑚𝑝_𝑠𝑖𝑑𝑒)… 

 +(2 ∙
1.51𝜋

4
 ∙ 𝑉𝑠𝑡𝑟𝑢𝑡_𝑠𝑖𝑑𝑒) + 𝑉𝑓𝑜𝑟𝑒_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 ) (29) 

where V is volume. 

 Then for the sway added mass due to sway acceleration based on the Y-Model, 

 𝑌�̇� = 𝐴22 = 𝜌 ∙ ((2 ∙ 𝑉𝑡𝑢𝑏𝑒) + (2 ∙ 𝑉𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟) + (
1.51𝜋

4
 ∙ 𝑉𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒)) (30) 
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and for the heave added mass due to heave acceleration based on the Z-Model, 

 𝑍�̇� = 𝐴33 = 𝜌 ∙ ((2 ∙ 𝑉𝑡𝑢𝑏𝑒) + (2 ∙ 𝑉𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟) + (
1.51𝜋

4
 ∙ 𝑉𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒)… 

 +(
1.51𝜋

4
 ∙ 𝑉𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟) + (

1.51𝜋

4
 ∙ 𝑉𝑎𝑓𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟)… 

 +
1.51𝜋

4
 ∙ 𝑉𝑠𝑡𝑟𝑢𝑡 + (0.57 (

𝐻𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

𝐷𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
)
−0.93

𝑉𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟) (31) 

 For the roll added mass coefficient due to roll acceleration, the Z-Model is used 

since roll motion offset from the central axis leads to dealing with instantaneous vertical 

motion of the individual components. For the backbone, there is already a coefficient a44 

that can be applied and integrated over the backbone. For the connectors, strut, and 

vertical thruster, roll for the overall underwater vehicle can be expressed equivalent to 

pitch about the central axis for each of the components, leading to using equation 27e as 

∫ 𝑥2𝑎33𝑑𝑥
𝐿𝑒𝑛𝑔𝑡ℎ/2

−𝐿𝑒𝑛𝑔𝑡ℎ/2
. The roll added mass for the tubes and rear thrusters can account for 

their offset from the roll axis with an appropriate modification of equation 27d, similar to 

that of equation 27e, 

 𝐴44 = ∫𝑟2𝑎33 𝑑𝑥 (32) 

where r, in this case, is the perpendicular distance from the central axis to the center of 

the cylinders. Using these expressions then, 

 𝐾�̇� = 𝐴44 = 𝜌 ∙ ((2 ∙ 𝑦𝑐𝑡𝑢𝑏𝑒
2 ∙ 𝑉𝑡𝑢𝑏𝑒) + (2 ∙ 𝑦𝑐𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

2 ∙ 𝑉𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟)… 

 +(
𝐻𝑓𝑜𝑟𝑒_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

2

12
∙ 𝑉𝑓𝑜𝑟𝑒_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟) + (

1.51𝜋

4
 ∙ 𝑉𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟) + (

1.51𝜋

4
 ∙ 𝑉𝑎𝑓𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟)… 

 +(
1.51𝜋

4
 ∙ 𝑉𝑠𝑡𝑟𝑢𝑡 ∙

𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑡𝑟𝑢𝑡
2

12
) +

0.234𝜋

4
∙ (

𝑤𝑖𝑑𝑡ℎ𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

2
)
2

∙ 𝑉𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 ) (33) 
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where yc is the geometric center offset in the y direction, length is the length along the 

longest axis of the component, and width is the side length of the square cross section. 

 For the pitch added mass coefficient due to pitch acceleration, the Z-Model is the 

most accurate to use again. The added mass coefficients for the tubes, rear thrusters, and 

backbone can be determined using the basic formula in equation 27e. For the vertical 

thruster, clamp connectors, and rear strut, a modified version of the same equation must 

be used considering cross-section propagation is a constant perpendicular distance from 

the axis of rotation: 

 𝐴55 = 𝑟2 ∫𝑎33 𝑑𝑥 (34) 

where r in this case is again the perpendicular distance from the axis of rotation to the 

corresponding centerline of the rotating component. Overall, then, 

 𝑀�̇� = 𝐴55 = 𝜌 ∙ ((2 ∙
(𝑥2𝑡𝑢𝑏𝑒

3 −𝑥1𝑡𝑢𝑏𝑒
3 )

3
∙ 𝑆𝑡𝑢𝑏𝑒) … 

 +(2 ∙
(𝑥2𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

3 −𝑥1𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
3 )

3
∙ 𝑆𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟)… 

 +(0.57 (
𝐻𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

𝐷𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
)
−0.93

∙ 𝑥𝑐𝑓𝑜𝑟𝑒_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
2 ∙ 𝑉𝑓𝑜𝑟𝑒_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟)… 

 +(
1.51𝜋

4
 ∙ 𝑥𝑐𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟

2 ∙ 𝑉𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟)+(
1.51𝜋

4
 ∙ 𝑥𝑐𝑎𝑓𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟

2 ∙ 𝑉𝑎𝑓𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟)… 

 +(
1.51𝜋

4
 ∙ 𝑥𝑐𝑠𝑡𝑟𝑢𝑡

2 ∙ 𝑉𝑠𝑡𝑟𝑢𝑡) + (
(𝑥2𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

3 −𝑥1𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
3 )

3
∙ 𝑆𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒) 

where S denotes the cross-sectional reference area, xc is the is the geometric center offset 

in the x direction, and x1 and x2 represent the limits of integration performed in the x 

direction (from x1 to x2). 

 For the yaw added mass due to yaw acceleration, the Y-Model is utilized. Though 

some components are offset in both the x and y directions, it is assumed that 
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instantaneously, crossflow over the geometry due to yaw is in the y direction since 

components are generally more offset from the origin in the x direction than the y 

direction. All components for the yaw added mass are computed this way. 

 𝑁�̇� = 𝐴66 = 𝜌 ∙ ((2 ∙
(𝑥2𝑡𝑢𝑏𝑒

3 −𝑥1𝑡𝑢𝑏𝑒
3 )

3
∙ 𝑆𝑡𝑢𝑏𝑒) … 

 +(2 ∙
(𝑥2𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

3 −𝑥1𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
3 )

3
∙ 𝑆𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟)… 

 +(
(𝑥2𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

3 −𝑥1𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
3 )

3
∙ 𝑆𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒) (35) 

 Now, the off-diagonal elements must be formulated. For the yaw added mass due 

to sway acceleration and sway added mass due to yaw acceleration,  

 𝑌�̇� = 𝑁�̇� = 𝐴26 = 𝜌 ∙ ((2 ∙
(𝑥2𝑡𝑢𝑏𝑒

2 −𝑥1𝑡𝑢𝑏𝑒
2 )

2
∙ 𝑆𝑡𝑢𝑏𝑒) … 

 +(2 ∙
(𝑥2𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

2 −𝑥1𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
2 )

2
∙ 𝑆𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟)… 

 +(
(𝑥2𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

2 −𝑥1𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
2 )

2
∙ 𝑆𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒) (36) 

and with a similar derivation for the heave added mass due to pitch acceleration and pitch 

added mass due to heave acceleration, 

 𝑍�̇� = 𝑀�̇� = 𝐴35 = 𝜌 ∙ ((2 ∙
(𝑥2𝑡𝑢𝑏𝑒

2 −𝑥1𝑡𝑢𝑏𝑒
2 )

2
∙ 𝑆𝑡𝑢𝑏𝑒) … 

 +(2 ∙
(𝑥2𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

2 −𝑥1𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
2 )

2
∙ 𝑆𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟)… 

 +(0.57 (
𝐻𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

𝐷𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
)
−0.93

∙ 𝑥𝑐𝑓𝑜𝑟𝑒_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 ∙ 𝑉𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟)… 

 +(
1.51𝜋

4
 ∙ 𝑥𝑐𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∙ 𝑉𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟)+(

1.51𝜋

4
 ∙ 𝑥𝑐𝑎𝑓𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∙ 𝑉𝑎𝑓𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟)… 

 +(
1.51𝜋

4
 ∙ 𝑥𝑐𝑠𝑡𝑟𝑢𝑡 ∙ 𝑉𝑠𝑡𝑟𝑢𝑡) + (

(𝑥2𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
2 −𝑥1𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

2 )

2
∙ 𝑆𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒) (37) 
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 Inserting values and solving for each of the parameters gives the following 

displayed in Table 4. 

Parameter Description Variable Value Units 

Water Density ρ 1000 kg/m3 

Added Mass 

𝑋�̇� 2.899 kg 

𝑌�̇� 11.855 kg 

𝑍�̇� 12.915 kg 

𝐾�̇� 0.13557 kg m2 

𝑀�̇� 1.4260 kg m2 

𝑁�̇� 1.0667 kg m2 

𝑍�̇� -3.562 kg m 

𝑀�̇� -3.562 kg m 

𝑌�̇� 2.818 kg m 

𝑁�̇� 2.818 kg m 

 

Table 4:  Added mass analysis values. 

 

3.5. Hydrodynamic Damping Coefficients 

 The first step in determining the hydrodynamic damping parameters on the 

underwater vehicle is to determine the relevant coefficients of drag for each geometric 

shape involved. Similar to the added mass, in order to analytically approximate the 

composite damping coefficients for the vehicle, geometric assumptions must be made. 

The X-Model, Y-Model, and Z-Model are used in this analysis as they were with the 

added mass. 

 With a forward top speed of approximately 1.5 meters per second, an overall 

length of 0.73 meters, and with the kinematic viscosity of water at 20 degrees Celsius as 

1.004*10-6 m2/s [24], the overall Reynolds number of LoCO in forward motion is 

 𝑅𝑛 =
𝑢𝐷

𝜈
=

1.5∙0.73

1.004∙10−6 ≈ 106 (38) 
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Intuitively, this value brings the laminar-turbulent flow transition region into question for 

evaluating coefficient of drag parameters, since this lies above the typical critical 

Reynolds number of ≈ 5 ∙ 105 for a sphere or cylinder in cross flow (See Figs. 11 and 12 

in [16]). However, since shorter, individual pieces are being evaluated for drag, and flow 

in all directions is not expected to be as high as the very top speed for LoCO, the drag 

parameters for the vehicle are assumed to be in the subcritical Reynolds number region. 

 First, the individual coefficients of drag must be found for each component. 

Hoerner [16] is used to provide approximations for all the geometric shapes used, and 

figures referenced below are from the same text. As mentioned in the previous section, 

the length to diameter ratio for the long tubes is approximately 5, and for the thruster 

approximations is about 0.5. Hoerner Figure 3-21 for axial flow across cylindrical bodies 

can be used to approximate the total coefficients of drag for these two shapes in axial 

flow. This total drag coefficient given includes skin friction effects. This provides an 

axial drag coefficient of about 0.8258 for the tubes using the blunt nose line. Though the 

thrusters are approximated in shape as blunt cylinders, they do have a short, rounded 

portion on either side. In an attempt to account for this, the average of the blunt nose and 

streamlined head forms is taken and provides a total axial drag coefficient of 

approximately 0.75 for the thrusters. For flow across these same cylinders normal to their 

center axis, Hoerner Figure 3-12 for the drag coefficient of a circular cylinder in the same 

flow conditions can be used where the 1.2 approximation just before the transition point 

is used. Since there is relatively low surface area, skin friction effects are neglected. 

 The sectional drag coefficient values for the rectangular prisms can be obtained 

using Hoerner Figures 3-22 and 3-23. For axial flow with all rectangular prisms, the 
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length to thickness ratio is approximately or above 2.5. So, from Hoerner Figure 3-22, the 

total drag coefficient in axial flow is approximately 1 and includes skin friction effects. In 

cross flow, the 3D-printed parts have a slight radius on the edges. This ratio of radius to 

width of the cross section is about 0.1, so the sectional drag coefficient is approximately 

2. Again, as these are bluff bodies in cross flow, the skin friction is considered negligible. 

A summary of these drag coefficients are given in Table 5 below. 

Component Axial Total CD Cross Flow Total CD 

Tube 0.8258 1.2 

Thruster 0.75 1.2 

Long Backbone 1 Not Needed 

Any Square Rectangular Prism (“rect”) Not Needed 2 

 

Table 5:  Summary of component coefficients of drag. 

 

 Another useful table to express parameters used in determining drag are the 

reference areas applicable to the coefficients of drag used in Table 5. Using the 

component geometries listed in Table 6, 

 

Component Arefaxial (m2) Cross Flow Arefcross (m2) 

Tube 0.010136 0.06109 

Thruster 0.007322 0.004291 

Long Backbone 0.0017564 Not Needed 

Clamp Connectors Not Needed 0.004287 

Connector Side Block Not Needed 0.0012655 

Strut Side Block Not Needed 0.0016500 

Long Backbone Not Needed 0.006094 

Rear Strut Not Needed 0.005056 

 

Table 6:  Summary of component drag reference areas. 

 

 Beginning with the equation for linear drag in the x direction with the X-Model, 
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 𝑋𝑢|𝑢| = −
1

2
 𝜌 (2 ∙ 𝐶𝐷𝑎𝑥𝑖𝑎𝑙𝑡𝑢𝑏𝑒

∙ 𝐴𝑟𝑒𝑓𝑎𝑥𝑖𝑎𝑙𝑡𝑢𝑏𝑒
+ 2 ∙ 𝐶𝐷_𝑎𝑥𝑖𝑎𝑙𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

∙ 𝐴𝑟𝑒𝑓𝑎𝑥𝑖𝑎𝑙𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
… 

 +𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

+𝐶𝐷𝑎𝑥𝑖𝑎𝑙𝑙𝑜𝑛𝑔_𝑏𝑎𝑐𝑘
∙ 𝐴𝑟𝑒𝑓𝑎𝑥𝑖𝑎𝑙𝑙𝑜𝑛𝑔_𝑏𝑎𝑐𝑘

… 

 +2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑟𝑒𝑐𝑡
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟_𝑠𝑖𝑑𝑒

… 

 +2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑟𝑒𝑐𝑡
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑠𝑡𝑟𝑢𝑡_𝑠𝑖𝑑𝑒

) (39) 

 Due to symmetry, drag caused by motion in the x direction does not also cause a 

net yaw moment on the model. Then for the lateral direction with the Y-Model, 

 𝑌𝑣|𝑣| = −
1

2
 𝜌 (2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒

∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒
+ 2 ∙ 𝐶𝐷_𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
… 

 +𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

) (40) 

 With this, there is also a net yaw drag moment caused by linear motion in the y 

direction. With each coefficient tied to a force in the y direction, the coefficient for each 

component can be multiplied by its center offset in the x direction causing rotation about 

the yaw axis, 

 𝑁𝑣|𝑣| =
1

2
 𝜌 (−2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒

∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒
∙ 𝑥𝑐𝑡𝑢𝑏𝑒 … 

+2 ∙ 𝐶𝐷_𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

∙ 𝑥𝑐𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 … 

 +𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

∙ 𝑥𝑐𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒) (41) 

 And finally in the vertical direction using the Z-Model, 

 𝑍𝑤|𝑤| = −
1

2
 𝜌 (2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒

∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒
+ 𝐶𝐷𝑎𝑥𝑖𝑎𝑙𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

∙ 𝐴𝑟𝑒𝑓𝑎𝑥𝑖𝑎𝑙𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
… 

 +2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

+𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

… 

 +2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟

… 

 +𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑠𝑡𝑟𝑢𝑡
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑠𝑡𝑟𝑢𝑡

) (42) 
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 There is also a net pitch drag moment caused by linear motion in the z direction. 

With each coefficient tied to a force in the z direction, the coefficient for each component 

can be multiplied by its center offset in the x direction causing rotation about the pitch 

axis, 

 𝑀𝑤|𝑤| =
1

2
 𝜌 (2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒

∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒
∙ 𝑥𝑐𝑡𝑢𝑏𝑒 … 

+𝐶𝐷𝑎𝑥𝑖𝑎𝑙𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐴𝑟𝑒𝑓𝑎𝑥𝑖𝑎𝑙𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

∙ 𝑥𝑐𝑓𝑜𝑟𝑒_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 … 

 +2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

∙ 𝑥𝑐𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 … 

+𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

∙ 𝑥𝑐𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 … 

 +2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟

∙ 𝑥𝑐𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 … 

 +𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑠𝑡𝑟𝑢𝑡
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑠𝑡𝑟𝑢𝑡

∙ 𝑥𝑐𝑠𝑡𝑟𝑢𝑡) (43) 

 Now the moment damping coefficients must be determined. For roll damping, the 

Z-Model can be used. The damping with the rotation of the backbone and vertical 

thruster through their center axes may be neglected. For the tubes and rear thrusters, a roll 

motion can be approximated as instantaneously vertical motion at a distance away from 

the roll axis. Rather than the typical integral expression in equation 16 that will be used 

for the clamp connectors and the rear strut, this moment damping can be expressed as 

 𝑀𝐷 = 𝐹𝐷 ⊥ 𝑟 = −
1

2
𝜌𝐶𝐷(𝑅𝑛)𝐴𝑟𝑒𝑓|𝜔|𝜔 ∙ 𝑟2|𝑟| (44) 

where r is the perpendicular distance from the axis of rotation. Expressing the roll 

damping coefficient, 

 𝐾𝑝|𝑝| = −
1

2
 𝜌 (2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒

∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒
∙ 𝑦𝑐𝑡𝑢𝑏𝑒

3 … 

 +2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

∙ 𝑦𝑐𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
3 … 
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 +𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟
∙ 𝑤𝑖𝑑𝑡ℎ𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 ∙

(𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟/2)4

4
… 

 +𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑠𝑡𝑟𝑢𝑡
∙ 𝑤𝑖𝑑𝑡ℎ𝑠𝑡𝑟𝑢𝑡 ∙

(𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑡𝑟𝑢𝑡/2)4

4
 ) (45) 

 Next is the pitch damping coefficient for the underwater vehicle using the Z-

Model. In this motion, the moments for the tubes, rear thrusters, and backbone must be 

integrated as in equation 16, but the remaining components utilize the modified equation 

44. 

 𝑀𝑞|𝑞| = −
1

2
 𝜌 ∙ ((2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒

∙ 𝑤𝑖𝑑𝑡ℎ𝑡𝑢𝑏𝑒 ∙
(𝑥2𝑡𝑢𝑏𝑒

3  |𝑥2𝑡𝑢𝑏𝑒|−𝑥1𝑡𝑢𝑏𝑒
3  |𝑥1𝑡𝑢𝑏𝑒|)

4
) … 

 +(2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐻𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 ∙

(𝑥2𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
3  |𝑥2𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟|−𝑥1𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

3  |𝑥1𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟|)

4
)… 

 +(𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
∙ 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 ∙

(𝑥2𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
3  |𝑥2𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒|−𝑥1𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

3  |𝑥1𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒|)

4
)… 

 +(𝐶𝐷𝑎𝑥𝑖𝑎𝑙𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐴𝑟𝑒𝑓𝑎𝑥𝑖𝑎𝑙𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

∙ 𝑥𝑐𝑓𝑜𝑟𝑒_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
3 )… 

 +(𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟

∙ 𝑥𝑐𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟
3 )… 

 +(𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟

∙ 𝑥𝑐𝑎𝑓𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟
3 )… 

 +(𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑠𝑡𝑟𝑢𝑡
∙ 𝐴𝑟𝑒𝑓𝑐𝑟𝑜𝑠𝑠𝑠𝑡𝑟𝑢𝑡

∙ |𝑥𝑐𝑠𝑡𝑟𝑢𝑡
3 |) (46) 

 Finally for the yaw damping coefficient using the Y-Model, all components must 

be integrated using equation 16. As explained with the yaw added mass, it is assumed 

that yaw motion produces an instantaneous velocity in the y direction, so component 

offsets in the x direction cancel and are not considered. 
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 𝑁𝑟|𝑟| = −
1

2
 𝜌 ∙ ((2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡𝑢𝑏𝑒

∙ 𝐻𝑡𝑢𝑏𝑒 ∙
(𝑥2𝑡𝑢𝑏𝑒

3  |𝑥2𝑡𝑢𝑏𝑒|−𝑥1𝑡𝑢𝑏𝑒
3  |𝑥1𝑡𝑢𝑏𝑒|)

4
) … 

 +(2 ∙ 𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
∙ 𝐻𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 ∙

(𝑥2𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
3  |𝑥2𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟|−𝑥1𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

3  |𝑥1𝑟𝑒𝑎𝑟_𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟|)

4
)… 

 +(𝐶𝐷𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
∙ 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 ∙

(𝑥2𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
3  |𝑥2𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒|−𝑥1𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

3  |𝑥1𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒|)

4
) (47) 

 Evaluating all equations for determining the damping coefficients, the results of 

the computations are given below in Table 7. 

Parameter Description Variable Value Units 

Water Density ρ 1000 kg/m3 

Hydrodynamic Damping 

Coefficients 

𝑋𝑢|𝑢| -23.14 kg/m 

𝑌𝑣|𝑣| -84.56 kg/m 

𝑍𝑤|𝑤| -100.93 kg/m 

𝐾𝑝|𝑝| -0.09952 kg m2 

𝑀𝑞|𝑞| -3.237 kg m2 

𝑁𝑟|𝑟| -2.831 kg m2 

𝑀𝑤|𝑤| 20.55 kg 

𝑁𝑣|𝑣| -18.60 kg 

 

Table 7:  Summary of hydrodynamic damping analysis results. 

 

3.6. Dynamic Equations for LoCO 

 Among the various parameters derived and discussed in this section, a table of 

final values to be inserted into final dynamic equations, including some extra geometric 

terms for the propulsion system, is shown below based on the analyses and simplifying 

assumptions in each section. For the purpose of clarity, the actual values will not be 

inserted and displayed. 

Parameter Description Variable Value Units 

Water Density ρ 1000 kg/m3 

Buoyancy Force B 123.02 N 

Center of Buoyancy 

CBx 0.2417 m 

CBy 0 m 

CBz 0 m 
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Mass m 12.545 kg 

Weight W 123.02 N 

Center of Gravity 

CGx 0.2417 m 

CGy 0 m 

CGz 0 m 

Moments of Inertia 

Ix 0.19094 kg m2 

Iy 1.2050 kg m2 

Iz 1.3465 kg m2 

Ixy 0 kg m2 

Iyz 0 kg m2 

Ixz 0 kg m2 

Added Mass 

𝑋�̇� 2.899 kg 

𝑌�̇� 11.855 kg 

𝑍�̇� 12.915 kg 

𝐾�̇� 0.13557 kg m2 

𝑀�̇� 1.4260 kg m2 

𝑁�̇� 1.0667 kg m2 

𝑍�̇� -3.562 kg m 

𝑀�̇� -3.562 kg m 

𝑌�̇� 2.818 kg m 

𝑁�̇� 2.818 kg m 

Hydrodynamic Damping 

Coefficients 

𝑋𝑢|𝑢| -23.14 kg/m 

𝑌𝑣|𝑣| -84.56 kg/m 

𝑍𝑤|𝑤| -100.93 kg/m 

𝐾𝑝|𝑝| -0.09952 kg m2 

𝑀𝑞|𝑞| -3.237 kg m2 

𝑁𝑟|𝑟| -2.831 kg m2 

𝑀𝑤|𝑤| 20.55 kg 

𝑁𝑣|𝑣| -18.60 kg 

Relevant Thruster Offsets 

xcfore 0.4156 m 

ycport -0.10932 m 

ycstarboard 0.10932 m 

 

Table 8:  Relevant dynamic model parameters from analysis and estimation. 

 

 Expressing the final dynamic equations for LoCO, 

Surge 

 𝑚(�̇� − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝐺(𝑞2 + 𝑟2)) = 𝑇𝑝𝑜𝑟𝑡 + 𝑇𝑠𝑡𝑏𝑑 + 𝑋𝑢|𝑢|𝑢|𝑢|… 

 −(𝑋�̇��̇� + 𝑍�̇�𝑤𝑞 + 𝑍�̇�𝑞
2 − 𝑌�̇�𝑣𝑟 − 𝑌�̇�𝑟

2) (48a) 
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Sway 

 𝑚(�̇� − 𝑤𝑝 + 𝑢𝑟 + 𝑥𝐺(𝑞𝑝 + �̇�)) = 𝑌𝑣|𝑣|𝑣|𝑣|… 

 −(𝑌�̇��̇� + 𝑌�̇��̇� + 𝑋�̇�𝑢𝑟 − 𝑍�̇�𝑤𝑝−𝑍�̇�𝑝𝑞) (48b) 

Heave 

 𝑚(�̇� − 𝑢𝑞 + 𝑣𝑝 + 𝑥𝐺(𝑟𝑝 − �̇�)) = 𝑇𝑓𝑜𝑟𝑒 + 𝑍𝑤|𝑤|𝑤|𝑤|… 

 −(𝑍�̇��̇� + 𝑍�̇��̇� − 𝑋�̇�𝑢𝑞 + 𝑌�̇�𝑣𝑝 + 𝑌�̇�𝑟𝑝) (48c) 

Roll 

 𝐼𝑥�̇� + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟 = 𝐾𝑝|𝑝|𝑝|𝑝|… 

 −(𝐾�̇��̇� − (𝑌�̇� − 𝑍�̇�)𝑣𝑤 − (𝑌�̇� + 𝑍�̇�)𝑤𝑟 + (𝑌�̇� + 𝑍�̇�)𝑣𝑞 − (𝑀�̇� − 𝑁�̇�)𝑞𝑟) (48d) 

Pitch 

 𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑟𝑝 +  𝑚(−𝑥𝐺(�̇� − 𝑢𝑞 + 𝑣𝑝)) = −𝑇𝑓𝑜𝑟𝑒 𝑥𝑐𝑓𝑜𝑟𝑒 … 

 +𝑀𝑞|𝑞|𝑞|𝑞|+𝑀𝑤|𝑤|𝑤|𝑤| − (𝑍�̇�(�̇� − 𝑢𝑞) + 𝑀�̇��̇� − (𝑍�̇� − 𝑋�̇�)𝑤𝑢 … 

 −𝑌�̇�𝑣𝑝 + (𝐾�̇� − 𝑁�̇�)𝑟𝑝) (48e) 

Yaw 

 𝐼𝑧�̇� + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞 +  𝑚(𝑥𝐺(�̇� − 𝑤𝑝 + 𝑢𝑟)) = −𝑇𝑝𝑜𝑟𝑡 𝑦𝑐𝑝𝑜𝑟𝑡 − 𝑇𝑠𝑡𝑏𝑑 𝑦𝑐𝑠𝑡𝑏𝑑 … 

 +𝑁𝑟|𝑟|𝑟|𝑟|+𝑁𝑣|𝑣|𝑣|𝑣| − (𝑌�̇��̇� + 𝑁�̇��̇� − (𝑋�̇� − 𝑌�̇�)𝑢𝑣 + 𝑌�̇�𝑢𝑟 + 𝑍�̇�𝑤𝑝… 

 −(𝐾�̇� − 𝑀�̇�)𝑝𝑞) (48f) 

 

3.7. Conclusion 

 In this chapter, the various physical and hydrodynamic values for LoCO have 

been determined. Parameters relating to buoyancy were determined using analytical 

methods and the CAD model of LoCO. Mass and moment of inertia values were also 
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obtained using the CAD model of LoCO along with computational estimation, analytical 

methods, and physical measurements. General assumptions have been made for each of 

these cases in order to simplify the governing dynamic models of the underwater vehicle. 

The more complex geometry of LoCO was simplified into three different geometric 

models that attempt to approximate added mass and hydrodynamic damping measures 

based on a composite makeup of simpler shapes. Final parametrized dynamic equations 

for LoCO are presented that allow the next step in simulating the AUV.  
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Chapter 4  

Simulation 

4.1. Introduction 

 There are a number of different simulation software programs that can be used in 

a dynamic simulation of a rigid body, such as Matlab or Unreal Engine. However, a 

simulation program that is able to directly interface with LoCO’s software and Robot 

Operating System (ROS) framework is Gazebo [25]. Like ROS, Gazebo is an open-

source platform for robotics and other software development that enables the 

visualization and physics simulation of robots without requiring real-world testing. This 

is especially valuable in the field of underwater robotics with a relatively unforgiving 

environment in the case of equipment failures. 

 

4.2. Modeling and Visualization 

 The modeling and visualization of LoCO in the simulation software is based on 

the SolidWorks CAD design model as seen earlier in the thesis. It is used as the template 

for creating the Universal Robotic Description Format (URDF) file for the robot, which is 

an XML-based file format for representing the model of a robot. Components of the robot 

are connected to the main robot frame or other components through “links”, like the 

linkages of a robot arm. The inertial matrix for LoCO is based on the estimates made in 

Chapter 3, along with its mass. In order to improve the efficiency of the simulation 

without affecting the physics engine, the mesh file generated by SolidWorks to provide 

the visual representation of LoCO does not include internal components. This physical 
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model for LoCO in a basic simulated world can be seen in Fig. 13. There are, however, 

some components modeled independent of the mesh. The black boxes near the front of 

the AUV represent the cameras that allow for the use of the vision systems in simulation. 

The green propeller blades, otherwise known as the thruster links, are also included to 

allow for the modeling of LoCO’s motion. The inertial and mass properties for the 

individual cameras and thruster propellers are assumed negligible. However, as Gazebo 

will not recognize links with exactly zero inertial or mass value, all negligible values for 

cameras and propellers were given on the order of 1e-5. 

 

Figure 13:  LoCO in a simulated Gazebo world. 

 

 In Gazebo, there are collision properties associated with each link or component 

of the robot so the simulation can model the physical impacts between the robot and its 

surroundings. The collision geometric boundaries are modeled to be the same as all of the 

visual boundaries for each link except for the main body of LoCO. Due to the complexity 

and size of the mesh, even at its relatively coarse mesh size, the collision boundary for 
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the main body is modeled as a box so as to lower the computational requirements of the 

simulation. The GazeboRosControl plugin is also incorporated in the URDF file to load 

appropriate hardware interfaces, control managers, and transmission tags into Gazebo for 

simulation. 

 

4.3. Physics 

 The physics engine implemented in Gazebo is the Open Dynamics Engine (ODE) 

[26]. Fluid mechanics and other real-world forces are not directly simulated in Gazebo. 

Instead, the hydrodynamic forces must be calculated within a ROS node then applied to 

the underwater vehicle model. First, in general, the ODE physics engine automatically 

applies a standard gravitational force to the model. With LoCO neutrally buoyant, a 

Gazebo plugin called “BuoyancyPlugin” applies the appropriate buoyancy force based on 

the specified water density and volume of the model. Although the displacement volume 

of LoCO has already been estimated, a volume made to match the collision bounding box 

is set in the model to achieve neutral buoyancy. 

 There are a number of ways to simulate LoCO’s propeller propulsion. For 

example, there is the Gazebo LiftDragPlugin that computes the thrust generated by 

spinning airfoils of given properties, or there are direct ROS Twist messages that can be 

sent to the simulation that directly control the velocity of the thrusters. However, with the 

established assumption that the thrusters provide point forces, the GazeboRosForce 

plugin was implemented to directly apply thruster forces to each of the thrusters. The 

simple physical models for the propellers have been left in the simulation in the case of 

future propeller dynamics integration. The underwater thrust force data for the T100 
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thruster from Blue Robotics is readily available on their website and discussed further in 

Chapter 5. 

 However, issues with ROS communication arose with this approach. Messages 

sent to the simulation to apply forces to the thrusters are only sent one at a time. 

Theoretically, the messages are all sent simultaneously, but even with only slight 

computation delay, certain LoCO motions cause a buildup in robot movement error. So, it 

was determined that all forces and moments on the robot would be summed and applied 

to vehicle frame origin through the same GazeboRosForce plugin as described in Chapter 

3. 

 

4.4. Simulation Architecture and Control 

 This ROS node graph in Fig. 14 shows the main working parts of the simulation, 

but the three critical aspects are the teleop keyboard program on the left, the sim control 

node program in the middle, and the Gazebo simulation on the right. The teleop keyboard 

is a program that sends the simulated robot thruster commands based on keyboard input. 

The Gazebo component on the far right is the actual simulation, where force commands 

and physics are applied to the robot. The sim control node highlighted in red is what 

bridges existing LoCO software with the simulation. It reads in the commands from the 

teleop node, reads in the state of the robot from Gazebo, then performs the necessary 

rotations to the force vectors and applies these to the simulation model. 
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Figure 14:  ROS program nodes and messages used to run the simulation. 

 

4.5. Quaternions and Force Application 

 Due to the possible shortcomings with singularities of using Euler angles to 

determine the robot coordinate frame orientation, and to reduce computation 

requirements, quaternions are used in the simulation instead. Quaternions are a 

mathematical representation of a four-dimensional framework defined as 

 𝒒 = 𝑞0 + 𝑞1 𝒊 + 𝑞2 𝒋 + 𝑞3 𝒌 (49) 

where q0 is a real number, and unit vectors i, j, k, are imaginary unit vectors expressing 

an imaginary dimension. One of the primary practical uses with quaternions comes with 

3D rotations, and when q0=0, the remaining elements come to represent the typical 3 

dimensions in space. For example, a quaternion where q1=1 and all other components 

equal 0 represents a unit vector in the x direction. More on the details of quaternions and 

their mathematical properties can be found in sources such as [27]. 

 During a simulation, Gazebo keeps track of the quaternion representation of the 

orientation of a robot. However, the GazeboRosForce plugin is only able to apply forces 

and in the global coordinate frame, so the desired force and moment vectors must be 
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rotated. Each time the simulation runs through the simulation control node, that 

quaternion frame representation is received from Gazebo. To achieve the rotation of a 

vector into the coordinate system represented by a quaternion, the following equation can 

be used,  

 𝒗𝒃𝒐𝒅𝒚_𝒇𝒓𝒂𝒎𝒆 = (𝒒 ∙ 𝒗) ∙ 𝒒∗ (50) 

where v is the original vector in three-dimensional space represented as a quaternion 

where q0 appropriately is set to 0, q* is the conjugate of the quaternion q, and all 

multiplication performed is quaternion multiplication. In the simulation, this 

multiplication is done with each inertial x, y, and z direction unit vector to determine the 

new unit vector representation of each body axis. 

 Also, Gazebo also only registers the actual velocities of the vehicle in the global 

coordinate frame, so dot products are performed appropriately to find the velocities and 

accelerations in the relative body frame. Once this is done, the sum of the forces and 

moments are calculated as depicted at the end of Chapter 3. The final computation 

requires additional dot products to translate relative forces and moments back into forces 

applied in the global coordinate frame. This method also accounts for the fact that the 

inertial axis in Gazebo is oriented differently than the body axes for which the equations 

of motion are derived, as can be seen in Fig. 13. 

 

4.6. Conclusion 

 In this chapter, and overview of the Gazebo-based simulation for LoCO has been 

given. The physical modeling aspects of LoCO come from the CAD model and estimates 

made in the previous chapter, and the physics for the simulation has been discussed. The 
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basic control framework for the simulation is based on ROS nodes and is made to allow 

an interface between existing LoCO software and the simulation world. Finally, 

quaternion rotations are used to correctly apply forces to the robot model for 

computational efficiency and regardless of the model state.  
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Chapter 5  

Experimental Data and Comparison with Simulation 

5.1. Introduction 

 Though analytical modeling and simulations can be performed to approximate the 

dynamic properties of a vehicle, real world testing is still critical. For full scale ships, 

dynamic characterization is often performed on a scale model in a tow tank that can 

maintain a given set of motions. The experimental testing with LoCO, however, occurred 

within a pool setting during a regular trial period. The currently available motion set of 

data is for straight line, horizontal motion at various thruster throttle commands. 

 

5.2. Experiment and Data Analysis 

 Since the forward motion of an underwater vehicle is arguably the most critical 

and simplest motion to test, this serves as the starting point for experimental data. Inertial 

measurement unit (IMU) data was collected at various equal rear thruster forces to 

provide a range of steady state velocities for LoCO. Each test case was repeated and 

averaged in order to confirm results. 

 The test cases for the experiment were based on throttle command, or a proportion 

of the maximum pulse width modulator (PWM) input to the electronic speed controller. 

The published thrust data for the T100 Blue Robotics thrusters can be seen below in Fig. 

15 [28]. Throttle commands range from -1 to 1, with a command of 0 centered at an input 

of 1500 μs. For example, a throttle command of 0.5 translates to 1700 μs. This 
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relationship was used to translate throttle command data into an axial force exerted by the 

thrusters on the robot. 

 

Figure 15:  Thruster force versus PWM input [28]. 

 

 IMU data was logged with the Pixhawk through the Mavros ROS package. 

Though tests were designed to be straight and horizontal, there was inevitably some 

variability in the robot motion, primarily a slight net pitching moment due to water 

seeping into some of the rear 3D printed components at the time. Conveniently, the 

Mavros package also provides the quaternion coordinate frame state of the robot on top 

of the acceleration data. So, like the frame rotations described in Section 4.5, any effect 

of the acceleration due to gravity on acceleration in the relative forward direction of the 

robot is filtered out. Maximum forward velocity for each throttle case was determined 

through trapezoidal integration of IMU acceleration data from the test start through the 
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point where steady state was reached. The results of this data analysis are shown in the 

following section. 

 

5.3. Simulation Data Comparison 

 With experimental data gathered for the forward motion case, the simulation can 

be compared to real data. Tests equivalent to the ones performed in the pool were 

performed in simulation for horizontal, straight line LoCO motion. 

 
 

Figure 16:  Velocity versus forward thrust applied for a straight line, horizontal path in a 

pool. 
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Figure 17:  Velocity versus full forward thrust applied for a straight line, horizontal path. 

 

 Though drag is characteristically a function of the square of velocity, results from 

the experimental testing display a linear trend, likely due to the data’s overall proximity 

to “1” meter per second. It can be seen from Fig. 16 that the simulation tends to 

overpredict the velocity achievable by the vehicle at lower thrust but converges to the 

experimental data at the highest thrust of approximately 50 N. One possibility for this 

discrepancy is some additional skin friction or viscous drag more prevalent at lower 

velocities than predicted by simulation. Then, at higher velocities, this drag returns to 

being relatively negligible as predicted by the simulation. 

 Fig. 17 is included to examine the velocity profile for LoCO as it approaches its 

top speed of approximately 1.5 meters per second. Though as expected from the first 

graph, the steady state velocities can be considered the same, the simulation acceleration 
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is higher than the experimental data. Part of this may be due to the higher drag than 

expected at lower velocities as seen in the Fig. 15. Another possibility is that the added 

mass estimates made from Equation 28 resulting from computational fluid dynamics 

simulations in [23] could tend to be lower than actual results. A higher added mass would 

also effectively decrease the acceleration of the vehicle and bring the simulation curve 

down to the experimental data. 

 Since experimental data was only gathered for surge motion, comparisons are not 

able to be made between the dynamic model and real-word data for other motions, such 

as yaw or pitching in the vertical plane. Further analysis and testing are required to verify 

the presented dynamic modeling for LoCO. 

 

5.4. Conclusion 

 Experimental trials have been run for LoCO’s motion in horizontal, straight paths. 

Forward acceleration relative to the vehicle was isolated during analysis by filtering data 

with quaternion rotation. This testing has established a maximum speed of approximately 

1.5 meters per second and provided overall estimates on forward velocity profiles. 

Simulation data for the same type of motion has been gathered and compared to the 

experimental results. Though the maximum velocity for LoCO in simulation correlates 

well to real data, the simulation typically leads to higher predicted velocities at lower 

thrusts than seen in experiments. This leads to suspected drag forces at lower velocities 

not currently accounted for tin the simulation. Further testing is required in order to 

validate the dynamic modeling for other LoCO motions, such as pitch and yaw. 
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Chapter 6  

Conclusion 

6.1. Review 

 In this thesis, the dynamic modeling and simulation of the LoCO AUV has been 

presented. An introduction to LoCO is given, following by the establishment of a 

foundation for dynamic derivations. The equations of motion for LoCO in 6 DOF are 

derived, and the corresponding forces are brought to attention in Chapter 2. The 

following chapter goes on to evaluate the presented coefficients and constants associated 

with the geometry of LoCO. The resulting finalized dynamic equations are implemented 

in a Gazebo-based simulator that is able to interface with onboard robot software. 

Chapter 5 presents the testing performed to obtain experimental surge data for LoCO’s 

motion. An overview of the data analysis is given and compared to equivalent simulation 

experiment data. 

 

6.2. Conclusions 

 Overall, this thesis sought to derive the dynamic equations for an underwater 

vehicle such as LoCO and evaluate the geometric-dependent parameters using established 

assumptions. Further, the model was to be implemented in a simulation and compared 

with experimental data obtained in a pool trial. The thesis has been primarily successful 

in all these points, but more analysis and real-world testing is required to firmly validate 

the full dynamic model for the vehicle. 
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6.3. Future Work 

 From this work, the foundation for dynamic characterization of the vehicle is 

established. Autonomous behavior and control system development can use the 

developed models to improve LoCO’s ability to perform underwater operations and assist 

personnel. Also, the dynamic models have been derived with respect to the rear of the 

tubes on the robot, rather than the center of gravity, which can certainly change as the 

robot development is continued. This allows for the easiest possible future modification 

of the dynamic models presented herein as the robot changes and additional equipment or 

sensors are implemented. 
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Appendix A 

 
  

Description Mass (kg)

CG X 

Displacement 

(m)

CG Y 

Displacement 

(m)

CG Z 

Displacement 

(m)

Ixx Iyy Izz Ixy Iyz Ixz

Left Tube

Left Battery* 0.5650 0.3242 -0.1205 -0.0114 0.0004 0.0028 0.0025 0.0000 0.0000 0.0000

Right Battery* 0.5650 0.3242 -0.0955 -0.0114 0.0004 0.0028 0.0025 0.0000 0.0000 0.0000

Polycarbonate Tube* 2.0412 0.2660 -0.1080 0.0000 0.0029 0.0230 0.0230 0.0000 0.0000 0.0000

Front End Cap 0.1590 0.4752 -0.1080 0.0000 0.0017 0.0008 0.0009 0.0000 0.0000 0.0000

Front Flange Seal 0.1440 0.5150 -0.1080 0.0000 0.0024 0.0013 0.0013 0.0000 0.0000 0.0000

Rear Flange Seal 0.1440 0.0170 -0.1080 0.0000 0.0024 0.0013 0.0013 0.0000 0.0000 0.0000

MDF Base 0.2037 0.2723 -0.1080 0.0253 0.0006 0.0207 0.0214 0.0000 0.0000 0.0000

Raspberry Pi 4* 0.0499 0.1782 -0.1090 0.0195 0.0003 0.0006 0.0009 0.0000 0.0000 0.0000

Pixhawk Assembly* 0.0371 0.1815 -0.1112 -0.0098 0.0002 0.0006 0.0008 0.0000 0.0000 0.0000

PDB Assembly* 0.0110 0.0869 -0.1080 0.0125 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000

Rear End Cap 0.1590 0.0030 -0.1080 0.0000 0.0017 0.0008 0.0009 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 1 0.0151 0.0029 -0.0934 -0.0275 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 2 0.0151 0.0029 -0.0788 -0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 3 0.0151 0.0029 -0.0788 0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 4 0.0151 0.0029 -0.0934 0.0275 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 5 0.0151 0.0029 -0.1225 0.0275 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 6 0.0151 0.0029 -0.1371 0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 7 0.0151 0.0029 -0.1371 -0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 8 0.0151 0.0029 -0.1225 -0.0275 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 9 0.0151 0.0029 -0.1080 -0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 10 0.0151 0.0029 -0.1080 0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Bottom Ballast Weight 1* 0.1843 0.2168 -0.1080 0.0347 0.0002 0.0001 0.0003 0.0000 0.0000 0.0000

Bottom Ballast Weight 2* 0.1843 0.2549 -0.1080 0.0347 0.0002 0.0001 0.0003 0.0000 0.0000 0.0000

Bottom Ballast Weight 3* 0.1843 0.3359 -0.1080 0.0347 0.0002 0.0001 0.0003 0.0000 0.0000 0.0000

Large Weight Camera Left* 0.1843 0.4732 -0.1454 0.0034 0.0001 0.0003 0.0002 0.0000 0.0000 0.0000

Large Weight Camera Right* 0.1843 0.4732 -0.0705 0.0034 0.0001 0.0003 0.0002 0.0000 0.0000 0.0000

Small Weight* 0.0283 0.1264 -0.0813 0.0193 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000

Right Tube

Right Battery* 0.5650 0.3242 0.1205 -0.0114 0.0004 0.0028 0.0025 0.0000 0.0000 0.0000

Left Battery* 0.5650 0.3242 0.0955 -0.0114 0.0004 0.0028 0.0025 0.0000 0.0000 0.0000

Polycarbonate Tube* 2.0412 0.2660 0.1080 0.0000 0.0029 0.0230 0.0230 0.0000 0.0000 0.0000

Front End Cap 0.1590 0.4752 0.1080 0.0000 0.0017 0.0008 0.0009 0.0000 0.0000 0.0000

Front Flange Seal 0.1440 0.5150 0.1080 0.0000 0.0024 0.0013 0.0013 0.0000 0.0000 0.0000

Rear Flange Seal 0.1440 0.0170 0.1080 0.0000 0.0024 0.0013 0.0013 0.0000 0.0000 0.0000

MDF Base 0.2038 0.2721 0.1079 0.0253 0.0006 0.0207 0.0213 0.0000 0.0000 0.0000

OLED Assembly* 0.0220 0.4587 0.1080 0.0260 0.0006 0.0003 0.0009 0.0000 0.0000 0.0000

Jetson Orbitty Carrier Board* 0.0410 0.1747 0.1191 0.0023 0.0002 0.0006 0.0008 0.0000 0.0000 0.0000

Jetson TX2* 0.0850 0.1747 0.1191 -0.0073 0.0002 0.0006 0.0008 0.0000 0.0000 0.0000

Jetson Fan* 0.0590 0.1747 0.1191 -0.0223 0.0002 0.0007 0.0008 0.0000 0.0000 0.0000

PDB Assembly* 0.0110 0.0869 0.1080 0.0125 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000

Rear End Cap 0.1590 0.0030 0.1080 0.0000 0.0017 0.0008 0.0009 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 1 0.0151 0.0029 0.1225 -0.0275 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 2 0.0151 0.0029 0.1371 -0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 3 0.0151 0.0029 0.1371 0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 4 0.0151 0.0029 0.1225 0.0275 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 5 0.0151 0.0029 0.0934 0.0275 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 6 0.0151 0.0029 0.0788 0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 7 0.0151 0.0029 0.0788 -0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 8 0.0151 0.0029 0.0934 -0.0275 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 9 0.0151 0.0029 0.1080 -0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Penetrator Bolt-Nut Assembly 10 0.0151 0.0029 0.1080 0.0110 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

Bottom Ballast Weight 1* 0.1843 0.1930 0.1080 0.0347 0.0002 0.0001 0.0003 0.0000 0.0000 0.0000

Bottom Ballast Weight 2* 0.1843 0.2676 0.1080 0.0347 0.0002 0.0001 0.0003 0.0000 0.0000 0.0000

Bottom Ballast Weight 3* 0.1843 0.3136 0.1080 0.0347 0.0002 0.0001 0.0003 0.0000 0.0000 0.0000

Large Weight Camera Left* 0.1843 0.4732 0.0705 0.0034 0.0001 0.0003 0.0002 0.0000 0.0000 0.0000

Large Weight Camera Right* 0.1843 0.4732 0.1454 0.0034 0.0001 0.0003 0.0002 0.0000 0.0000 0.0000

Local Moment of Inertia per kg (*If Derived Analytically)
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Table 9:  LoCO Component Matrix for mass and moment of inertia determination. 

 
 

Figure 18:  Clockwise penetrator numbering convention. 

 

Externals

Front Clamp Connector 0.0567 0.3278 0.0000 0.0000 0.0009 0.0003 0.0010 0.0000 0.0000 0.0000

Rear Clamp Connector 0.0567 0.0398 0.0000 0.0000 0.0009 0.0003 0.0010 0.0000 0.0000 0.0000

Back Thruster Support 0.1417 -0.0808 0.0000 0.0006 0.0004 0.0035 0.0036 0.0000 0.0000 0.0000

Clamp Set Left Rear* 0.1680 0.0398 -0.1080 0.0000 0.0037 0.0019 0.0019 0.0000 0.0000 0.0000

Clamp Set Left Front* 0.1680 0.3278 -0.1080 0.0000 0.0037 0.0019 0.0019 0.0000 0.0000 0.0000

Clamp Set Right Rear* 0.1680 0.0398 0.1080 0.0000 0.0037 0.0019 0.0019 0.0000 0.0000 0.0000

Clamp Set Right Front* 0.1680 0.3278 0.1080 0.0000 0.0037 0.0019 0.0019 0.0000 0.0000 0.0000

Left Thruster* 0.2950 -0.1414 -0.1001 0.0006 0.0009 0.0008 0.0008 0.0000 0.0000 0.0000

Mid Thruster 0.2950 0.4063 0.0000 0.0006 0.0008 0.0008 0.0009 0.0000 0.0000 0.0000

Right Thruster 0.2950 -0.1414 0.1001 0.0006 0.0009 0.0008 0.0008 0.0000 0.0000 0.0000

Small Weight Left* 0.0283 0.3278 -0.1778 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

Small Weight Right* 0.0283 0.3278 0.1778 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

TOTAL 12.3201 0.2538 0.0010 0.0021 0.1909 1.2050 1.3465 0.0023 -0.0003 0.0059


