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Abstract

Monocular depth estimation is a fundamentally challenging problem in Computer Vi-

sion and a widely researched topic. It is particularly useful for Robotics applications where

design constraints prohibit the use of multiple cameras. Monocular depth estimation finds

widespread use in autonomous driving applications. Since the task is to estimate the

depth associated with each pixel from a single image, rather than two or more, a global

perspective of the scene is required to estimate it correctly. Various pixel-wise losses like

reconstruction loss, left-right consistency loss, disparity smoothness loss, etc., capture the

local scene information. However, they do not take into account the global consistency of

the scene. Generative Adversarial Networks(GANs) are highly effective in capturing the

global structure of the scene and producing real-looking images, so they have the potential

of depth estimation from a single image. This work focuses on using adversarial training

for a supervised monocular depth estimation task in combination with various pixel-wise

losses. Some variants of GANs like Vanilla GAN, LSGAN, Wasserstein GAN, etc. have

been explored and their associated advantages and drawbacks for the training have been

presented. We observe that with minimal depth-supervised training in both the generator

and discriminator, there is a significant reduction of error in depth estimation in a number

of GAN variants.
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Chapter 1

Introduction

Monocular depth estimation is a fundamentally ill-posed problem in Computer Vision.

Two significant reasons are projection ambiguity and scale ambiguity. On the application

of geometric transformation on a scene, the points in the two different scenes may map

to the same location on the plane, see figure 1.1. As such, many 3D scenes can explain

a single 2D image. Humans possess the ability to perceive depth from one image using

monocular depth cues like the size of objects, texture, and linear perspective. Figure 1.2

shows how the spatial arrangement of the trees and other objects develops our intuition of

the depth associated with every object present in the scene.

In order to relate these monocular depth cues effectively, it is essential to have a global

view of the scene. Eigen et al. [12] addressed this issue for the first time using two-

stage deep neural networks, one for estimating the depth structure using a global view

and the other for refining the coarse predictions within local regions. The work presented

in the thesis aims to address the issue of capturing global scene context by making use

of Generative Adversarial Networks(GANs) [13]. Since GANs are capable of producing

globally coherent images and the success of monocular depth estimation can be measured by

how well global information can be extracted from a single image, GANs are an attractive

choice. Our work is inspired by that of Godard et al. [14]. In this thesis, elaborate

experiments have been done to show the impact of using different variants of GANs on

a monocular depth estimation network (in our case, Godard’s) using a small amount of

ground truth information. A novel loss function using a two-stage discriminator network

1
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Figure 1.1: Figure shows how two points that have different 3D locations project on to the
same 2D location as discussed above. Source: [4]

has been suggested to help improve depth estimation from a single image.

1.1 Depth Estimation using traditional Stereo Vision

Depth estimation refers to obtaining the distance from the camera of every object present

in the scene. Like human eyes, two cameras are displaced horizontally from each other

on the same plane to obtain two views of the scene. By comparing these two images, the

relative depth information of the scene can be obtained as a disparity map, which measures

the horizontal displacement in pixels of the corresponding image points. These disparity

values are inversely proportional to the depth of the scene at the corresponding location of

the pixel. Corresponding points in the left and right views can be obtained by comparing

patches in the left image to those in the right. Dense matching algorithms are more popular

and used in applications like image-based modeling [15], robot-vision, etc.

The major building blocks in stereo-matching algorithms are:

1. Matching Cost Computation

2. Matching Cost Aggregation

3. Disparity Computation and Optimization
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Figure 1.2: Figure shows how the spatial arrangement of different objects, their varying
texture helps humans perceive depth from a single image as discussed in section [1]. Source:
[5]

4. Disparity Refinement

The dense algorithms can be of two types broadly, local (window-based), and global. Local

algorithms, where the disparity computation at a given point depends only on intensity

values within a finite window, make smoothness assumptions by aggregating support. Some

of these dense algorithms can be broken down into steps 1, 2, 3 of the major building-blocks

of a stereo-matching algorithm as described above. For example, the SSD (Sum of Squared

Differences) [16] algorithm can be described as:

• At a given disparity, the matching cost is computed using the squared difference of

intensity values.
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• Matching cost aggregation is done by summing matching cost over square windows

with constant disparity.

• Disparity computation is done by selecting the minimal aggregated value at each

pixel.

Other local algorithms, however, combine the matching cost computation and aggrega-

tion steps and use a support region to compute the initial cost. These include normalized

cross-correlation [17], rank transform [18]. These algorithms run very fast but suffer from

low quality of obtained disparities.

On the other hand, global algorithms solve a global optimization problem by making ex-

plicit smoothness assumptions. These algorithms do not perform a cost aggregation step,

but they perform a disparity assignment and minimize a global cost function consisting of

a data term and a smoothness term. These algorithms differ in the type of minimization al-

gorithm used, for example, loopy belief propagation [19] , expectation-maximization (EM)

[20], graph cuts [21], simulated annealing [22],probabilistic (mean-field) diffusion [23], etc.

The obtained disparities are better than those obtained from local methods. However,

being iterative, it is time-consuming.

Apart from local and global algorithms, iterative algorithms form the third category of

algorithms. These algorithms operate on an image pyramid where results from the coarser

levels of computation are used for a more local search at the finer levels [24], [17].

1.2 Usefulness of CNNs in vision-based tasks

Convolutional Neural Networks play an important role in various computer vision tasks.

The usage of CNNs increased greatly for vision-based tasks when they were first used by

Alex Krizhevsky in 2012 for the ImageNet Classification challenge. The huge success of it,

bringing down the classification error from 26 % to 15 % revolutionized the whole world of

Computer Vision and the first Neural Network named AlexNet[25] was established. Eight

years since then, many companies have used Neural Networks for their applications. While

Facebook uses it for image tagging algorithms, Google uses CNNs for their Image searching

algorithms, Amazon for product recommendations. Image Classification, Image Segmen-

tation, Depth Estimation are among the few tasks where Neural Networks have proved to
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be a champion and have helped generalize and outperform traditional image processing

techniques for the above mentioned tasks.

AlexNet, the first of its kind, used a simple architecture consisting of 5 convolutional layers,

max-pooling layers, dropout layers, and three fully-connected layers. It was used for the

classification of images consisting of 1000 different categories. ReLU(Rectified Linear Unit,

which was used to speed up training as compared to Tanh), usage of data augmentation,

dropout layers, stochastic gradient descent for training were the main attractions of this

model. Post that, many deep neural networks have been developed for various vision-based

tasks [26], [27].

Among the shallow networks, VGGNet [28] has proved to be very efficient for Image Seg-

mentation tasks. At the same time, ResNet [29], owing to its deep architecture, is well

known in the computer vision community because of the concept of residual connections.

VGG architecture was developed by the Visual Geometry Group at Oxford. In AlexNet,

the kernel sizes are of size 11 and 5 in the first and second convolutional layers while

in VGG, these are replaced by multiple 3 × 3 kernels stacked one after the other. Since

multiple non-linear layers increase the depth of the network, it allows it to learn more

complex features. The cost (number of parameters of the network) also decreases owing

to a decrease in the kernel size. For instance, three 3 × 3 filters stacked together, with a

stride of 1 has a receptive field size of 7, with the number of parameters being 3*9(C2)

while for a filter of size 7, it is 49*(C2),(the receptive field size being constant) with C

being the number of input and output channels. Three fully connected layers follow the

convolutional layers. The width of the network is initially 64 and increased by a factor of

2 after every pooling layer. In VGG-Net, there are blocks of the same filter size, which

are applied multiple times to extract more representative features. This concept of using

blocks or modules became a common theme in the networks after VGG.

So far, we have seen that increasing the number of layers in a network increases the

accuracy of the model; for example, AlexNet had five convolutional layers while VGGNet

had 16. The accuracy of VGGNet was 90.6 %, while the accuracy of AlexNet was 84.7%.

However, the gradients required to update the weights and biases in the initial few layers

become extremely small, owing to repeated multiplications in back-propagation. So, the

earlier layers are rarely trained. The fading away of gradients leading to loss of training is
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Figure 1.3: Block/Modular Layout of VGG-16. A variant of this, VGG-30 has been used
as an encoder in the generator model as discussed in section 4.1

. Source: [7]

called the vanishing gradient problem.

Before ResNet, there were several ways to handle the vanishing gradient problem; for

instance, [30] adds an auxiliary loss in a middle layer as extra supervision, but none of

them completely resolved the problem. The basic idea of ResNet is adding an “identity

shortcut connection” that skips one or more layers, as shown in figure 1.5.

Stacking up layers, in this case, should not degrade the network performance because

it can be avoided by merely stacking identity mappings on the current network. Then, the

resulting network would have a similar performance as the shallow network. It indicates

that a deeper model should not produce a higher training error than its shallower coun-

terparts. Through the changes mentioned, ResNets were learned with network depth as

large as 152. It achieves better accuracy than VGGNet while being computationally more

efficient than it. It achieves a top-5% accuracy of 95.51 in image classification.
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Figure 1.4: Layers of VGG-16 network in detail. Source: [6]

Figure 1.5: Residual block of the ResNet architecture which has proved to be more effective
in solving deep learning problems due to its residual blocks. Source: [7]

1.3 Deep Learning vs. traditional Stereo Vision in Depth

Estimation tasks

Deep learning based algorithms define a cost function and aim to learn the weights asso-

ciated with a network by calculating the gradients of the cost function w.r.t the weights

and updating the same using an optimization algorithm like SGD [31], RMSProp [32],

ADAM [33] etc. The parameters (weights and biases) are tuned as per the gradients, and

there are no hand-crafted features adopted by the cost function as it happens in tradi-

tional stereo-matching algorithms. Hand-crafted features limit the performance of these
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algorithms. Traditional stereo-matching algorithms have discontinuous disparities and suf-

fer from “bad pixels,” which counts the number of differences between estimated disparity

values and ground truth values that exceed a certain threshold. While these algorithms

require post-processing, for example, the SGM algorithm requires a post-processing algo-

rithm called Slanted Plane Smoothing (SPS) to smoothen out the obtained disparities.

Most CNNs do not require any such post-processing step. A disparity smoothness loss

term is integrated into the deep learning algorithm itself, which maintains high disparity

changes in areas having high gradient changes and low disparity changes in areas having

less gradient changes. This end-to-end training mechanism for depth estimation tasks helps

obtain smoother disparities. On the contrary, stereo-matching based algorithms rely on

hand-crafted features, which highly limits their performance. The figure shows that the

SGM-method suffers from obvious bad pixels, while GC-Net provides a much smoother

and more consistent depth map due to its end-to-end training mechanism.

Figure 1.6: This figure shows how Deep Learning based methods produce smooth and
consistent disparities, discussed above. The top disparity is that of GC-Net, and the
bottom one is that of SGM. Source: [8]

1.3.1 Mono vs. Stereo

Deep learning based monocular depth estimation has been studied very widely owing to

the rapid development of deep neural networks, and has achieved promising performance.

MDE is widely used in SLAM or Visual Odometry to improve the mapping process, [34],

[35], recover the absolute scale [36], [37], [38] and replace the RGB-D sensor in dense



9

mapping. It is commonly used in the self-driving car industry to measure the depth of

an object and provide feedback about the location of the other objects with respect to

the car. Since it is important to know the position, velocity, depth, thermal and more

information about the surroundings of the self-driving vehicle, it becomes imperative to

accommodate different kinds of sensors, thus producing space constraints. Mono cameras

instead of a stereo one, help here. Also, monocular cameras are small, have low power

consumption, and are easily accessible. Audi A8 uses a twin radar and monocular camera to

implement its autonomous emergency braking system [39]. The company Autoliv provides

automotive safety solutions to many car manufacturers in the world. Their mono vision

system is capable of pedestrian detection, automated braking and traffic sign detection.

[40]. Overall, the AV (Autonomous Vehicle) industry has been using monocular cameras

for accomplishing different tasks like object, lane and traffic signs detection with good

accuracy and its (AVs with mono cameras) sale is expected to take a surge by 2030 [41].

Another domain where it is useful is in the underwater autonomous vehicles, where space

constraints, and power consumption plays a crucial role. Monocular cameras have also

been beneficial in the surgical robotics domain where space constraints is a crucial factor

[42].

1.3.2 Monocular depth cues

Research on Monocular depth estimation was first started by Eigen et al. [12], following

which there has been active research in the field obtaining high accuracies in MDE which

leads to the conclusion that neural networks can see depth in single images. In [43] four

previously published networks are taken and investigated what depth cues they exploit. In

their experiments, they found that these deep networks focus only on the vertical position

of the object from the ground while ignoring the actual size of the objects present in the

scene. Knowledge of the vertical position requires the network to estimate the camera

pose. However, these networks can only partially estimate the camera pitch and the roll

angles, and not the other pose parameters like the absolute translation and rotation of the

second image with respect to the first. The inability to correctly estimate all parameters

leads to inaccurate measurements in depth. The reason behind this inability is unknown

in the literature, and further investigation about it can hugely improve the accuracy of
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monocular depth estimation networks.

1.4 Usefulness of GANs over other methods in Monocular

Depth Estimation

Very recently, the usage of GANs [13] in Monocular Depth Estimation has caught attention

due to the capability of GANs to maintain global coherence in its generated samples. With

the usage of GANs, the quality of generated data has increased over the years. GANs

have been successfully used in image reconstruction [44], image segmentation [45], novel

viewpoint estimation [46] and binocular depth estimation [47]. GANs are generative mod-

els, and they create new data instances that resemble the training data. These networks

generate such realistic images by pairing a generator with a discriminator, which are both

convolution neural networks. The generator learns to produce the target output given a

latent variable while the discriminator learns to distinguish real data from the samples gen-

erated by the generator. A concept of an adaptable loss is introduced by the discriminator,

which penalizes the samples generated by the generator that looks different from the real

data.

Figure 1.7: Figure shows images of people generated by a GAN developed by NVIDIA.
The realism of these fake images are extra-ordinary. Source: [9]

This confrontation between the generator G and the discriminator D helps the generator

to learn which is based on the minimax problem as defined below:

min
G
max
D

Ex∼Pgt [logD(x)] + Ex̂∼PG
[log(1−D(x̂))] (1.1)
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where x is the ground truth depth map, and x̂ refers to the depth

Ldisp = Ed∼Pgt [logD(d)] + Ed̂∼PG
[log(1−D(d̂))] (1.2)

Lrecons = EI∼Pgt [logD(I)] + EÎ∼PG
[log(1−D(Î))] (1.3)

map predicted by the generator.

1.5 Contributions

This thesis makes the following contributions:

• Adding Adversarial training to a Monocular Depth Estimation Model using a limited

amount of ground truth depth information.

• Adding depth supervision to both generator and discriminator. Using a combination

of image reconstruction loss and depth supervision loss in the discriminator and

relatively weighing them to provide better feedback to the generator for efficient

training.

• Experimentation with three different kinds of GAN frameworks, viz, Vanilla GAN,

LS-GAN(Least Squares GAN), Wasserstein GAN, to study their impact on monoc-

ular depth estimation model training.

The rest of the thesis is organized as follows. Chapter 2 gives an overview of the Related

Work in supervised, unsupervised, and semi-supervised Monocular Depth Estimation. The

methodology, i.e., the different types of architecture and loss functions used, details on

training, etc. are described in Chapter 3. Chapter 4 contains the results, experiments,

and subsequent discussions. Chapter 5 contains discussions on the conclusion and scope

for future work.



Chapter 2

Related Work

2.1 Monocular Depth Estimation: In Detail

As explained in section 1.3.1, Monocular depth estimation can be particularly useful in

industries where it is essential to deal with space constraints [42]. It can also be applied

in SLAM to improve the mapping process [34], [35], recover the absolute scale of a scene,

[36], [37], [38] and avoid the use of an RGB-D sensor in dense mapping [48]. Besides, due

to the low cost and small size of mono cameras as opposed to RGB-D sensors, they are

getting increasingly popular for use in robotics applications like drones. Furthermore, a

dense depth map of a scene can be estimated from a single image in an end-to-end manner

as opposed to using a LiDAR. However, estimation of depth of a scene from a single image

is a fundamentally ill-posed problem and requires effectively relating many different cues.

As explained in section 1, a global perspective of the scene is required to estimate the depth

of a scene from a single image accurately. Texture variation, scene context, occlusions, etc.

also need to be considered. Evidently, these cues cannot be obtained by examining local

image patches.

12
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2.2 Delving Deep into the Methods and Techniques of Monoc-

ular Depth Estimation

As explained in the previous section, the key idea in monocular depth estimation is a com-

bination of both global and local cues of a scene. To this end, the first work was done by

Saxena et al. [49], where the global context information was modeled by using manually

engineered features. In their approach, they used two types of features: absolute depth fea-

tures to measure the absolute depth at a particular patch and relative features to estimate

the relative depths between two patches, after dividing the whole image into small patches.

Eigen et al. [12] combined global and local features by using two deep network stacks: one

was used to make a coarse global prediction based on the entire image, and the other was

used to make local refinements to these predictions. Li et al. [50] proposed a refinement

method based on Conditional Random Field(CRF) instead of using two separate deep

neural networks for global and local prediction. Since CRFs can characterize information

among neighboring pixels and has been widely used in image segmentation [51], they have

proved to be effective in refining the predicted coarse depth values. Works like [52], [53]

support this concept. Besides, there have been recent developments in the use of convo-

lutional neural networks (CNNs) [10], recurrent neural networks (RNNs) [54], variational

auto-encoders (VAEs) [55] and generative adversarial networks (GANs) [56] to address the

problem of monocular depth estimation. These can be categorized into supervised, semi-

supervised, and unsupervised estimation methods. The subsequent sections describe the

basic idea of each type of network and discuss research applying them to the MDE problem.

2.2.1 Supervised Monocular Depth Estimation techniques

In supervised techniques, the supervisory signal is that of the ground truth depth maps.

Deep neural networks are trained to predict depth maps from a single image. The difference

between the predicted depth map and the ground truth acts as the driving force to train

these networks. The loss can be defined as under:
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L2(d, d∗) =
1

N

N∑
i

‖d− d∗‖2 (2.1)

where d and d∗ are the real and the predicted disparities respectively. Shown below are a

few techniques of using depth supervision for monocular depth estimation:

Techniques based on different architectures

The first work to solve the ill-posed problem of monocular depth estimation using deep

learning was done by Eigen et al. [12] The architecture composed of two stacks, one global

and the other local to predict the depth maps in an end-to-end fashion. The training loss

function is defined as:

L(d, d∗) =
1

N

N∑
i

y2
i −

λ

N2

(
N∑
i

yi

)2

(2.2)

where d∗ is the true depth, d is the estimated depth, y2
i = log(d)− log(d∗) and λ refers to

the balance factor which is set to 0.5. In [57], Eigen et al. [] proposed a multi-scale generic

framework capable of performing depth map estimation, surface normal estimation, and

semantic normal prediction from a single image. An additional loss function that takes

into account the local structural consistency was also added to the loss described in 2.2.

Ls(d, d
∗) =

1

N

N∑
i

[
(∇xDi)

2 + (∇yDi)
2
]

(2.3)

where Di = log(di)− log(d∗i ), ∇ is the vector differential operator. This function calculates

the gradient of the difference between real and predicted depths in both horizontal and

vertical directions.

Owing to the outstanding performance of Resnet [29], Laina et al. [58] used Resnet to learn

the mapping between a single RGB image and its corresponding depth image. Residual

learning helped obtain higher accuracy. Also, the up-sampling blocks which replaced the

fully connected layers in ResNet improved the resolution of the predicted depth map. Their

training used the BerHu(reverse Huber) loss as shown below :

LBerhu(d, d∗) =

|d− d∗|, if |d− d∗| ≤ c
(d−d∗)2+c2

2c , if |d− d∗| ≥ c
(2.4)
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where c is a threshold set as 1
5maxi(|d−d

∗|). So, within a range defined by c, Berhu is equal

to L1 loss, while outside the range it is equal to L2 loss. By using ResNet and the improved

loss function as described above, this work achieved better results when compared to [59].

To improve the portability of a depth network on different cameras, Facil et al. [60]

introduced the camera model into the depth estimation network, thus improving their

generalization capabilities.

All the above methods described above achieve accuracies comparable to the ground truth.

However, their capabilities are limited in embedded systems because of a large number of

parameters in deep neural networks. The non-real-time performance of these networks can

be improved by designing lightweight auto-encoder networks, as shown by Woft et al. [61]

or by applying network pruning techniques.

Techniques based on Conditional Random Field

This section talks about using Conditional Random Fields in order to obtain continu-

ous disparities as opposed to having a separate network for refining coarse disparities.

Conditional Random Field has been widely used in solving image segmentation problems

following the work of Jayasumana et al. [62]. They work towards applying similar labels to

pixels having similar properties. This concept was first introduced by Li et al. [50] in the

domain of monocular depth estimation. In their work, they designed a network to regress

the depth map from multi-level image patches at the super-pixel level. The obtained depth

map is then refined from the super-pixel level to the pixel level through CRF. The energy

function which is minimized as below:

E(d) =
∑
iεS

φi(di) +
∑

(i,j)εεs

φij(di, dj) +
∑
cεP

φc(dc) (2.5)

where S refers to the set of super-pixels, εs stands for the set of super-pixels that have a

common boundary, and P is the set of pixel-level patches. E(d) is composed of three terms:

(i) a data term for calculating the quadratic distance between the ground truth depth, d

and the one predicted by the network d̄ (ii) a smoothness term for relating neighboring

super-pixels and (iii) an auto-regression model for taking into account the local relevant

structures in the depth map. This information is used to improve the accuracy of depth

maps due to the structural consistency between the depth maps and the semantic labels.
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Wang et al. [53] presented a framework to jointly estimate the pixel-level depth map and

semantic labels given a single image.

2.2.2 Unsupervised Monocular Depth Estimation Techniques

Instead of using the ground truth depth data for supervising the training, these methods

use the underlying epipolar geometry present between the left and right pairs of images as

their supervisory signal.

Techniques based on view synthesis

Unsupervised methods commonly treat MDE as a view synthesis problem where a partic-

ular frame in a given sequence of frames is reconstructed based on the knowledge of the

camera’s intrinsic parameters and the spatial transformation between consecutive frames.

Zhou et al. [63] leveraged this idea to combine a depth network and a pose network to pre-

dict the depth and the transformation between corresponding frames, respectively. They

estimated the corresponding pixels in the next frames based on the output of the two

networks and used the reconstruction error between the predicted and the original frame

as the supervisory signal. Other than using L1 loss, they also incorporated SSIM loss to

weigh their reconstruction error. Godard et al. [64]in their recent work on MDE showed

that it is beneficial to use the minimum error between consecutive frames instead of the

mean. This leads to improved error rates.

View reconstruction between consecutive frames, however, works only when the position

of objects between consecutive frames do not change. This highly limits the efficiency of

unsupervised MDE networks to real-world data. To address this issue, researchers use a

mask to minimize the effect of dynamic objects present in the scene. Vijayanarasimhan

et al. [65] designed an object mask network to model the dynamic objects present in the

scene. They regress the motion of these objects along with the camera parameters to cal-

culate the optical flow. However, usage of these masks increases the computation cost of

the network and makes the training difficult. To relax the network of the difficult task of

predicting the mask, Bian et al. [66] used geometry-based masks instead of estimating it

by the deep network. This replacement reduced the error metrics.
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Techniques based on combination with other vision-based tasks

In these methods, the geometric relationship between a task coupled with MDE is explored

to enhance the loss function of the network. A combination of image segmentation and

MDE are very popular in this aspect, and a cross-consistency term is introduced to help

reduce the error metrics. Yin et al. [67] proposed a joint framework for estimating depth,

ego-motion and optical flow.

2.2.3 Semi-supervised Monocular Depth Estimation techniques

Semi-supervised methods provide two advantages as compared to unsupervised techniques;

an increase in accuracy and recovery of scale information from the semi-supervised signals.

Also, the dependence on dense and expensive ground truth data is reduced as compared

to supervised methods.

Crux of Semi-supervised model

A disparity map is estimated between the left and right images in a basic semi-supervised

monocular depth estimation model. This disparity image is used to estimate the right

image, given the left image by inverse warping. This reconstruction loss between the esti-

mated right image and the original right image is used as a supervisory signal to constrain

the training process. The process has been described, as shown in figure 2.1. The equation

is defined as:

Lrecons =
∑
p

‖Il(p)− Ir(p+ Dis(p))‖2 (2.6)

where Il is the left image, Ir is the right image and Dis(p) is the obtained disparity.

This concept was first utilized by Garg et al. [10], where they also used a smoothness

term in order to refine the coarse disparities and improve their continuity. Godard et al.

[14] improved the above loss function by introducing a left-right consistency term. As

the name suggests, the left and right disparity maps were made to be consistent with

each other. Also, Garg’s network was modified to predict the left and right disparity

maps together, which was used to predict the right image from the left and vice-versa.

A structural similarity index measurement (SSIM) [68] was introduced to strengthen the

similarity between the real images and the synthesized images. Ramirez et al. [69] proposed
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Figure 2.1: The crux network architecture of an unsupervised neural network introduced
by Garg et al. as discussed in 2.2.3. Source: [10]

a framework for jointly estimating depth and semantic image segmentation. They designed

an additional decoder stream to estimate semantic labels and trained the network in a

supervised manner. Also, a cross-domain discontinuity term taking into account both

the predicted semantic image and the predicted depth image, was applied to improve the

smoothness of the predicted depth map. The additional cross-domain loss term showed a

better performance than the previous smoothness loss terms used by Garg [10] and Godard

[14].

Techniques based on stereo matching

Features from different views can also be combined to provide additional supervision. To

this end, Tosi et al. [3] leveraged a stereo-matching strategy by combining features from

different view-points. Their network framework contains three parts: a multi-scale feature

extractor for extraction of high-level features, a disparity network for prediction of the

disparity map, and a refinement network for refining the obtained disparities.

Techniques based on sparse ground truth availability

Depths obtained by lidar are sparse and are sometimes used as extra supervision in mono

depth estimation. Kuznietsov et al. based the training of their network on the following



19

equation:

Lrecons =
∑
pεΩZ,l

‖Dl(p)−Gl(p)‖δ +
∑
pεΩZ,r

‖Dr(p)−Gr(p)‖δ (2.7)

where ΩZ,l are the pixels where ground truth is available and ‖∗‖δ is the berHu norm.

It has been proven how prior information can help in localizing information required in

monocular depth estimation. Fei et al. [70] used the global orientation computed from

inertial measurements as a priori information in order to constrain the normal vectors to

the surfaces of objects. The prior information, in this case, improves the accuracy of the

depth map significantly.

2.3 Role of GANs in Monocular Depth Estimation

Monocular depth estimation can be summarized as an image generation task, and encoder-

decoder networks are often used for image generation tasks. However, such configurations

trained using an L1 or an L2 loss produce blurry images, as mentioned in [71], since the

output of the network is penalized based on the input image alone. The feedback from

the generated output images in subsequent iterations is not taken into account in such

configurations. Here, enters GANs. As discussed in 1.4, Generative Adversarial networks

introduced by Goodfellow et al. [72] has received much attention in the research community

in solving various problems in Computer Vision. GANs are very useful where generating

globally coherent images are important. To this end, adversarial learning was first made

use of in monocular depth estimation by Jung et al. [73]. Their network consisted of a

Global Net and a Refinement Net to estimate the global and local 3D structures from a

single image. To introduce adversarial training into the process, a discriminator was used

to distinguish between the real and the predicted maps. The confrontation between the

generator and the discriminator networks facilitates the training of the framework and

helps maintain the global coherence in the predicted images. This confrontation can be

best described by the following equation:

min
G
max
D

Ex∼Pgt [logD(x)] + Ex̂∼PG
[log(1−D(x̂))] (2.8)

where x is the real depth map, and x̂ is the generated one. Apart from normal GANs used,

conditional GANs have also been used to estimate depth from RGB videos, as evident in
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[74]. Since the ground truth depth maps are not available in an unsupervised framework,

the synthesized images and the real images are fed to the discriminator to trigger the ad-

versarial training. [1] used GANs for monocular visual odometry and depth estimation.

Zhao et al. [75] used cycle GAN [76] for the transformation between the synthetic and

real domains to increase the size of the data set, and proposed an epipolar geometry-aware

symmetric domain adaptation network (GASDA) to use the synthetic data effectively. The

learning of their network was thus from two sources- first, from the epipolar geometry of

the real domain and second, from the ground truth labels in the synthetic domain, thus

achieving competitive results.

Inspired by the compelling use of GANs in solving various problems of stereo vision in

general and MDE, the work presented in the thesis takes Godard’s [14] model and extends

the training in an adversarial fashion using ground truth depth images as extra supervision.

As suggested by Isola et al. [44], in his Pix2Pix paper, the performance of a deep network

increases significantly when a high-level adversarial loss is combined with a low-level re-

construction loss such as L1. This is because an adversarial network is capable of updating

both high and low-level details in an image generation task. Usage of GANs in works like

novel view-point estimation by Huang et al. [77], predicting future frames in a video by Yin

et al. [78], etc has been beneficial. The key idea in a good generator-discriminator network

is making them equally competitive. As the usage of left-right consistency loss forces the

generator to output better depth maps, having a depth map supervision in addition to the

synthesized image ones can also make it a better discriminator. The subsequent sections

talk about the architecture in detail.



Chapter 3

Method Overview

Estimating depth from a single image is essentially an image reconstruction problem first

introduced by Garg et al. [10], where a convolutional neural network takes in a left image

of a stereo pair and generates a disparity map which is used to construct the corresponding

right image of the pair. The difference between the predicted image and the original

rectified image serves as the main driving force for training the network.

In this thesis, Godard’s [14] model for monocular depth estimation is used as the

baseline to formulate the adversarial framework to devise supervised monocular depth

estimation framework. The crux of the idea lies in formulating a novel loss function based on

a min-max game played between two equal competitors. This confrontation is achieved by

using a generator to generate depth maps and a discriminator to criticize it, thus leading to

improvement. As described in the previous chapter, the key to a good adversarial network

formulation lies in designing comparable discriminators and generators. A combination of

an excellent generator and a weak discriminator would always generate images that lack

appropriate feedback by the discriminator leading to poor improvement in the generated

images over iterations. Similarly, a poor generator and a strong discriminator would always

reject the generated images even though they appear close to being real. In light of the

above observations, additional depth supervision could be added to both the discriminator

and the generator with their relative weights, adjusted to obtain better reconstructed

images and corresponding depth maps. The subsequent sections of this chapter discuss the

adversarial formulation in detail and how reconstruction losses are used to combine with

21
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adversarial losses and improvements over previous works.

3.1 Generator Model

The input to the generator network is a left image of a stereo pair that outputs two disparity

maps(left-to-right and right-to-left). This will be referred to as dr and dl respectively.

The left-to-right disparity map and the left image is used to generate the right image

through inverse warping. Let the left and right reconstructed images be called ˜I l and

˜Ir respectively. A good generator should predict dr and dl such that the reconstructed

images, ˜I l and ˜Ir are close to the real images of the stereo pair. Minimal distortions

in the generated disparity maps will retain the shapes and structures of the reconstructed

images post warping.

The training loss is governed by four individual losses, each measuring and minimizing a

different aspect of the reconstruction process. In addition to the losses used by Godard, a

depth supervision loss is added to the generator network to improve the training process.

All the losses are calculated in four image scales starting at a size of 256×512 and resizing

by a factor of 2 for the consecutive scales. Since the depth values captured by the LiDAR is

sparse, the depth loss is calculated only at those points where the ground truth is available.

The combined loss Ls is defined at each output scale s such that the total loss is defined

as L =
4∑
s=1

Ls. Ls is composed of four terms as described under :

• Appearance Loss or Image Loss : The input image I lij and the reconstructed im-

age ˜I lij are compared by using a combination of L1 and SSIM loss which is described

as under:

Lap =
1

N

∑
i,j

α
1− SSIM(I lij , Ĩ

l
ij)

2
+ (1− α)

∥∥∥I lij − Ĩ lij∥∥∥ (3.1)

The value of α here is chosen as 0.85.

• Disparity Smoothness Loss : This loss forces the disparities to be smooth. Hence,

in areas of high image gradients, where depth discontinuities often happen, this loss

smoothens the effect.

Lds =
1

N

∑
i,j

|∂xdlij |e
−‖∂xIlij‖ + |∂ydlij |e

−‖∂yIlij‖ (3.2)
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The weight associated with this loss is 0.1.

• Left-Right Consistency Loss : This loss makes the left-to-right (or right-to-left)

disparity map output by the network to be equal to the projected right-view (left-

view) disparity map. it can be defined as under:

Llr =
1

N

∑
i,j

|dli,j − dri,j+dli,j | (3.3)

The weight associated with this loss is 1.0.

• Supervised or Lidar Loss : This loss term measures the difference between the

scaled disparity predicted by the network and the ground truth depth(converted to

disparity) for the points where the ground truth is available(input depth map is

sparse). this can be explained as under:

Lsup =
1

N

∑
i,jεΩ

|dli,j − Z| (3.4)

where Ω refers to the set of points where ground truth is available and Z is the ground

truth depth which has been converted to disparity using the formula mentioned in

4.1. A weight of 0.25 has been associated with this loss.

The generator outputs a scaled disparity map at each scale which is gradually up-sampled

by a factor of 2. Each of the above mentioned reconstruction losses are computed at every

scale and summed up using

4∑
s=1

Ls where,

Ls = αapLap + αdsLds + αlrLlr + αsupLsup (3.5)

where αap is the weight associated with the appearance loss,αds is the weight associated

with disparity smoothness loss, αlr is the weight for the left-right consistency loss, and αsup

is the supervised lidar loss’s weight.

We use the first three weights associated with the losses following Godard et al. The

weight associated with the supervised LiDAR loss has been obtained through hyperparam-

eter tuning.



24

3.2 Discriminator Model

As mentioned by Godard [14], the error metrics for evaluation of the predicted disparities

improve by 3% on addition of the left-right consistency loss to the pixel-wise reconstruction

losses. Owing to the addition of this loss and the supervised LiDAR loss, the performance

of the generator would increase significantly. As such, the discriminator which is added

to distinguish between the real and fake images, needs to be made competitive to provide

efficient feedback to the generator in order to generate depth maps that are both realistic

and globally coherent. To this end, the present work improves over existing works by

adding a combination of lidar depth supervision and image reconstruction loss - a two-

step discriminator framework to compete well with the generator. Thus, the generator,

in addition to the per-pixel losses, consists of two more adversarial losses, viz, the GAN

loss via image reconstruction, and the GAN loss via the depth supervision. The relative

weights of the two adversarial losses have been tuned to provide effective feedback to the

generator.

3.3 Adversarial Extension of Base Model

For the adversarial training of the network, the baseline model is extended by a two-stage

discriminator network, the first of which distinguishes between the real and the generated

right images. The second one distinguished between the generated and the real disparity

maps. The generator is thus trained using a combination of the four per-pixel losses as

mentioned in section 3.1, the adversarial GAN loss from the first discriminator(stereo image

reconstruction) and the adversarial GAN loss from the second discriminator(depth image

reconstruction) with their relative weights being adjusted by hyper-parameter tuning. The

overall network architecture can be seen in figure 3.1. To study the effectiveness of different

GAN variants, the GAN loss, which is added to the image reconstruction loss, Ls described

in section 3.5 is varied according to the GAN variant being used. These are described as

under:

• Vanilla GAN

• LS(Least Squares) GAN
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• Wasserstein GAN with gradient penalty

The final loss which is added to train the generator is:

L = Ls + αgan−reconsLGAN−recons + αgan−depthLGAN−depth (3.6)

The values of αgan−recons and αgan−depth are crucial to making the discriminator effective

for the training of the generator. Too strict a regime would reject even a good depth

image generated by the generator, which can impact the training process. These values

are carefully chosen through hyperparameter tuning.

Figure 3.1: The network architecture of the proposed method. As discussed in section 3.2,
the discriminator takes as input both the reconstructed pair (real and fake) and the depth
pair of images. The input to the generator is the stereo pair of images.



Chapter 4

Experiment and Results

4.1 Implementation Details

In this thesis, we have extended Godard’s work [14] to accommodate adversarial losses to

improve the training process. For the generator, since it is an encoder-decoder structure,

a VGG30 [28] architecture has been used as the encoder. The network outputs scaled (per

unit width of the image) disparities at intermediate layers of the decoder while upsampling

from the bottle-neck layer. For the discriminator, three different variants, viz Wasserstein-

GAN (with gradient penalty) [79], Least-squares GAN [80] and Vanilla GAN have been

used to experiment with the relative advantages of one network type over the other. For the

Vanilla and LS variants, a 5-layer PatchGAN [44] has been used, while for the Wasserstein

GAN, a 3-layer fully connected network has been used following Groenendijk et al. [2].

PatchGAN, first introduced by Zhu et al. in their work on Pix2Pix [81], penalizes the fake

input to the discriminator in patches as opposed to classifying the whole image as real or

fake. As shown by Isola et al., using a PatchGAN has led to the better reconstruction

of images as opposed to using ImageGAN, where the receptive field extends to the whole

image. Since the task of the generator is more involved than that of the discriminator, a

more complex network has been used for building the generator network. The number of

parameters in the generator is 39 million, as opposed to 8 million in the discriminator.

26
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4.2 Training, Hyperparameter Analysis, and System details

For the training, as suggested by [72], an Adam Optimizer[33] with a learning rate of 0.0001

has been used while for the discriminator, a stochastic gradient descent based optimizer is

used. All the models described in this work have been trained for 50 epochs to enable a

fair comparison. Following the work of [82], the learning rate has been reduced by half of

its initial value after 30 epochs for every ten epochs for the remainder of the training.

Many tricks and tips, as suggested by [72], are applied to enable a stable training of the

GAN. Some of these are label smoothing, which assigns a value of 0.9 and 0 to real and

fake images as opposed to hard labels of 1 and 0. This has a positive impact on the

training process as it allows the gradients to flow better. Also, in the generator, a random

horizontal flip is applied to the input RGB and depth images. This significantly helps in

improving the randomness and achieves lower error metrics. Following Godard’s paper,

color augmentation is also done on the input RGB images on the go. Based on the output

of a random number generator, gamma, brightness and color shifts in the ranges of [0.8,1.2],

[0.5,2.0] and [0.8,1.2], respectively, are done for each color channel separately.

The training has been done on the KITTI dataset [83], which consists of 29000 stereo pairs

of an image of a car driving in various environments from highways to rural roads, etc. The

typical size of an image is 1242 × 375. However, for training purposes, it has been resized

to 256 × 512. For the depth maps, the official KITTI annotated depth maps(downloaded

from 1 ) are used as opposed to using raw LiDAR images which have been known to

have inherent issues [56]. For choosing the hyperparameters, the following values are set,

αap = 1.0, αds = 0.1, αlr = 1.0., following the work of [14]. For choosing the weight of the

supervised LiDAR loss, hyperparameter tuning was done, and a value of 0.25 yielded the

best results. The weight of the adversarial losses was chosen as 0.5 for both the adversarial

losses obtained through hyper-parameter tuning.

The training was done on a K40 GPU cluster provided by the Minnesota Supercomputing

Institute. 2 GPUs were used for every training experiment. The source code is available

at 2 .

1 http://www.cvlibs.net/download.php?file=data depth annotated.zip
2 https://github.com/mitra052/SUP MonoGAN

http://www.cvlibs.net/download.php?file=data_depth_annotated.zip
https://github.com/mitra052/SUP_MonoGAN
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4.3 Evaluation Criteria

During the evaluation, the disparities are converted to depth maps using the formula

depth = (focal length * Baseline)/disparity (4.1)

As mentioned earlier, the predicted depth values are capped to a maximum depth of 80me-

tres. As by Garg et al. [10], vertical centre crop of images are used. For quantitative eval-

uation, Absolute relative Distance(ARD), Squared Relative Distance(SRD), Root Mean

Squared Error(RMSE), and log Root Mean Squared Error(log RMSE are used). For these

metrics, lower values indicate better results. Also, accuracy within threshold t, where t

ε[1.25, 1.252, 1.253] is used as another set of metrics. For these metrics, higher values indi-

cate better results.

Following Godard, a post-processing step is applied to obtain smoother disparities and

reduce the effect of occlusions, which create disparity ramps along the sides of the image.

The input images are horizontally flipped so that the disparity ramps are now on the right

side of the image. The final disparity map is obtained by combining the first 5% from the

flipped disparity, the last 5% from the original disparity image, and the central part using

a mean of the original and the flipped disparities. The final post-processing step doubles

the inference time. However, it helps reduce the visual artifacts present in the predicted

disparity map.

4.4 Datasets used

For testing and inference generation, following datasets have been used:

4.4.1 KITTI: Kitti split

The Kitti split consists of 200 test images. These are high-quality disparity images provided

as part of the official training set, which covers 28 scenes. These disparity maps are much

better in quality than the reprojected Velodyne laser depth values. Also, the maximum

depth in the KITTI dataset is of the order of 80m. The predictions of all the networks

are capped to this value. As observed in table 4.1, there is a significant improvement

in the RMSE values on the addition of adversarial training to our baseline model. The
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improvement in the addition of the second discriminator can also be observed in this case. It

is to be noted that no batch normalization or residual learning has been used, demonstrating

the sole effect of the adversarial training on a supervised monocular depth estimation

model. In figure 4.1, we have shown qualitatively, how we obtain more continuous and

crisp boundaries due to the usage of GANs.

Method ARD SRD RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.1252 1.4486 6.295 0.220 0.839 0.934 0.973

Proposed-1 0.1225 1.3454 6.076 0.214 0.841 0.938 0.975

Proposed-2 0.1233 1.3946 6.202 0.219 0.837 0.936 0.974

Baseline+pp 0.1205 1.2996 6.057 0.214 0.840 0.938 0.976

Proposed-1+pp 0.1190 1.2277 5.860 0.208 0.843 0.941 0.978

Proposed-2+pp 0.1188 1.2246 5.971 0.212 0.838 0.938 0.977

Table 4.1: Baseline improvements on Kitti split. For ARD, SRD and RMSE and log
RMSE, lower values are better. For the rest, higher values are better. Proposed-1 refers
to the usage of 1 discriminator and Proposed-2 refers to the usage of 2 discriminators. pp
implies results with post-processing as discussed in 4.3. As we can observe, that without
the post-processing, the adversarial training effect is more pronounced.

4.4.2 Kitti: Eigen split

The Eigen split is most popularly used by the research community for the sake of fairness

of comparison with existing work. The split consists of 697 images covering a total of 29

scenes. As opposed to the Kitti split as discussed in 4.4.1, these ground truth values are not

part of the official KITTI training data. Following the community, we generate the ground

truth by reprojecting the 3D points as viewed from the LiDAR onto the left RGB camera.

For fairness of comparison with existing methods, we use the crop suggested by [12] for

evaluating all our models. The quantitative results and improvements over our baseline

model can be found in table 4.2. It shows improvements in the obtained RMSE values

compared to baseline with the maximum depths being capped to 80metres and 50metres.

Results have also been shown with and without the post-processing step (marked as pp),

as discussed in section 4.3. It is interesting to note that while the error metrics improve

on the addition of a single discriminator, the values have increased slightly beyond the

baseline on the introduction of the second discriminator. More details on it have been
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explained in section 4.6. The qualitative results on different GAN variants on the Eigen

split can also be viewed in 4.5, 4.6 and 4.7.

Method cap ARD SRD RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Baseline 80m 0.1194 1.1048 5.392 0.224 0.843 0.932 0.968
Proposed-1 80m 0.1167 1.0583 5.291 0.2222 0.8498 0.9333 0.9675
Proposed-2 80m 0.1199 1.1245 5.452 0.229 0.840 0.929 0.966

Baseline + pp 80m 0.1150 1.0095 5.230 0.217 0.846 0.936 0.970
Proposed-1 + pp 80m 0.1134 0.974 5.127 0.215 0.851 0.937 0.970
Proposed-2 + pp 80m 0.1156 1.0232 5.287 0.221 0.843 0.933 0.969

Baseline 50m 0.1122 0.7974 4.047 0.209 0.856 0.941 0.972
Proposed-1 50m 0.1070 0.7622 3.943 0.208 0.863 0.942 0.972
Proposed-2 50m 0.1126 0.8048 4.090 0.2141 0.854 0.938 0.970

Baseline + pp 50m 0.1083 0.7333 3.932 0.203 0.860 0.944 0.974
Proposed-1 + pp 50m 0.1069 0.7060 3.835 0.202 0.864 0.945 0.975
Proposed-2 + pp 50m 0.1088 0.739 3.974 0.207 0.856 0.941 0.973

Table 4.2: Baseline improvements on Eigen split of Kitti dataset. For ARD, SRD
and RMSE and log RMSE, lower values are better. For the rest, higher values are better.
Proposed-1 refers to the usage of 1 discriminator. Proposed-2 refers to the usage of two
discriminators. pp implies post-processing applied on the predicted disparity images as
discussed in section 4.3.

4.4.3 CityScapes

To test the generalization properties of the network to other datasets, CityScapes [11]

has been used. It consists of 22973 training images, 500 validation images, and 1525

test images. As noted by previous researchers during CityScapes evaluation, some images

contain artifacts at the top and bottom of the images. Also, the cameras capture some

part of the car on which the sensor is mounted. Since depth at such close distances can

be difficult to be estimated with high accuracy, the top 50 and bottom 224 rows of the

images are cropped. The quantitative results of the improvements in CityScapes data can

be found in table 4.3. Similar to the trends in Kitti and Eigen split, this dataset also shows

improvements with the addition of the adversarial training containing one discriminator

only.
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Method ARD SRD RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.3660 9.1115 20.406 0.545 0.309 0.614 0.783

Proposed-1 0.3646 8.9514 20.145 0.539 0.298 0.622 0.791

Proposed-2 0.3677 8.9943 20.327 0.550 0.292 0.609 0.780

Baseline + pp 0.3344 7.3664 19.923 0.525 0.306 0.617 0.789

Proposed-1 + pp 0.3332 7.2146 19.631 0.518 0.295 0.625 0.797

Proposed-2 + pp 0.3374 7.3054 19.860 0.531 0.288 0.611 0.786

Table 4.3: Baseline improvements in Cityscapes. For ARD, SRD and RMSE and log
RMSE, lower values are better. For the rest higher values are better. Proposed-1 refers
to the usage of 1 discriminator. Proposed-2 refers to the usage of two discriminators. pp
implies post-processing applied on the predicted disparity images as discussed in section
4.3.

4.4.4 Make3D

To further evaluate our model’s generalization capability, we test the inference performance

of our model (trained on KITTI) on the Make3D dataset [84]. Make3D dataset consists of

134 mono image sequences, which are different from those of Kitti and CityScapes, consist-

ing of stereo image pairs. The improvements can be found in the table 4.4. Even though

the calibration parameters of KITTI are very different from Make3D and the images’ con-

tent are different, we have observed reasonable improvements in the error metrics on the

introduction of adversarial training.

Method ARD SRD RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.7505 16.2641 14.038 0.744 0.192 0.398 0.607

Proposed 0.7559 16.5522 13.974 0.747 0.192 0.397 0.606

Table 4.4: Baseline improvements on Make3D dataset. For ARD, SRD and RMSE
and log RMSE, lower values are better. For the rest higher values are better.

4.5 Generalization Capability

Overall we have observed that our model trained on KITTI generalizes on the CityScapes

and Make3D dataset. However, this improvement is only due to the introduction of one

discriminator. The second discriminator produces error values that increase beyond the
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baseline. This trend has been observed in all the datasets, and it can be improved by effec-

tively choosing the weights of the associated loss components, which has been a challenge

in our case, as explained in section 4.6.

4.6 Ablation study

For this work, we extend Godard’s model in a supervised adversarial fashion. For future

reference, we define our baseline model (as is described in all quantitative evaluation tables)

as Godard’s model plus the additional depth supervision loss. We perform an ablation

study to study the effect of adding the adversarial training on our baseline model. The

results can be found in table 4.5.

Method ARD SRD RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Ours (Baseline) 0.1194 1.1048 5.392 0.224 0.843 0.932 0.968

Ours(Proposed-1) 0.1167 1.0583 5.291 0.2222 0.8498 0.9333 0.9675

Ours (Proposed-2) 0.1199 1.1245 5.452 0.229 0.840 0.929 0.966

Table 4.5: Ablation study of adversarial training used. The evaluation has been
done on the Eigen split of KITTI dataset.

From the table, it can be observed that there is a drop in the RMSE values on the

addition of the adversarial training to our baseline model. However, with the addition of the

second discriminator, the error values have increased slightly. This can be improved with

more careful consideration of the relative weights of the adversarial losses while training the

network and by altering the relative rates with which the generator and the discriminator

learn, which, as discussed in section 3 is crucial for efficient training and feedback provided

to the generator. Optimizing the two mentioned parameters to produce an additive effect

of the two discriminators for error reduction has been difficult in our case. However, as

mentioned before, we have found that the addition of a discriminator network with one

loss only, has helped reduce the error of MDE.



33

4.7 Comparison with state-of-the-art MDE techniques

As mentioned by Laina et al. [58], deep residual learning helps improve the accuracy of

depth prediction from single images. In the thesis, our purpose is to show the usefulness

of supervised adversarial training to solve the MDE problem without having to use the

benefits of residual blocks in ResNet [29]. Hence, for fairness of comparison, only those

methods where VGG-based architectures have been used, are selected for comparison with

our method. Also, those techniques which use extra training data, for example, using

Cityscapes for their training, has not been considered because it was observed that with

more training data, the error metrics of all compared techniques decrease. While all of them

are semi-supervised, meaning they either use some ground truth or both the left and right

images during training, some use GANs. Our method outperforms the two mentioned

GAN based methods, as shown in table 4.6, and outperforms one other method where

ground truth depth supervision is used [85]. Another noteworthy point is that no Batch

Normalization is used, which generally pairs up well as suggested by Groenendijk et al. [2]

in their work. The decreased error metrics of Tosi et al. can be explained by their usage of

dense semi-global matching based depth map as extra supervision to assist their training

process while we use only a limited amount of ground truth depth data in the form of a

sparse LiDAR depth map. With more depth information, our method is also expected to

perform at par with theirs. It is to be noted that Pilzer et al., which outperforms ours,

use a student-teacher based architecture, a variant of adversarial training, to train their

MDE model. Our increased error metrics as compared to theirs can be explained by the

difficulty of training a GAN and finding the appropriate global minima. Mode-collapse is

a very common problem faced while training GANs. Our method outperforms the error

metrics obtained in [1], [85], and [2] due to the usage of supervised adversarial training of

the MDE network.

4.8 Comparison with stereo

To compare the performance of monocular depth estimation techniques with their stereo

counterparts, we have compared our method with two stereo depth estimation techniques

(methods which use both left and right images during inference generation) evaluated on
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Method Year ARD SRD RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Almalioglu et al. [1] 2018 0.150 1.414 5.448 0.216 0.808 0.939 0.975
He et al. [85] 2018 0.123 1.3164 6.169 0.216 0.841 0.937 0.974

Chen et al. [86] 2019 0.118 0.905 5.096 0.211 0.839 0.945 0.977
Tosi et al. [3] 2019 0.111 0.867 4.714 0.199 0.864 0.954 0.979

Pilzer et al. [87] 2019 0.098 0.831 4.656 0.202 0.882 0.948 0.973
Groenendijk et al. [2] 2020 0.142 1.200 5.694 0.239 0.809 0.927 0.967

Ours 2020 0.113 0.974 5.127 0.215 0.851 0.937 0.970

Table 4.6: Comparison with SOTA techniques. It can be seen that our method
outperforms the two GAN-based MDE technique suggested by [1] and [2], while [3] performs
the best among the compared techniques. For detailed discussion, see text in section 4.7.

the Eigen split of Kitti dataset. As observed in table 4.7, the difference between stereo-

based methods and ours is of the order of 1.117 meters. However, with the usage of ResNet

as the encoder in the generator, Batch Normalization and using more data to train the

network can bring this number down significantly to reduce the gap between the stereo

and mono methods.

Method ARD SRD RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Godard et al. [14] 0. 068 0.835 4.392 0.146 0.942 0.978 0.989
Feng et al. [88] 0.065 0.673 4.003 0.136 0.944 0.979 0.991

Ours 0.113 0.974 5.127 0.215 0.851 0.937 0.970

Table 4.7: Comparison with Stereo Depth Estimation techniques. As discussed in
section 4.8, the order of the maximum difference between the RMSE values of mono and
stereo methods is 1.12 meters.

4.9 Discussion of results using GANs

The training of all the models in the experiments has been done using the KITTI dataset.

In all the experiments, the baseline model is the model consisting of the four reconstruction

losses mentioned in 3.1, without the use of any adversarial training. Initially, the effect of

using three variants of GANs viz. Vanilla GANs, Least Squares(LS) GANs, and Wasserstein

GANs on two types of loss components have been studied. These loss component types

are having the L1 loss combined with the supervised lidar loss and the other variant being
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the full loss, as described in section 3.1. It has been observed that Wasserstein GAN yields

the best results when using only L1 loss combined with the supervised lidar loss. However,

the performance of WGAN decreases when all the loss components are used. These results

are consistent with the discussion of [2]. In general, WGAN produces extremely blurry

disparities, which can be found in figure 4.1. It can be observed that Wasserstein GAN

tends to over-smooth the obtained disparities. There are no sharp variations or transitions

in the predicted disparity values. The other GAN variants, i.e., Vanilla GAN and LS-GAN,

produce improvement in the predicted disparity values. The difference in the different

error metrics compared to the baseline model is significant, with RMSE dropping from

6.06(baseline model) as opposed to 5.86 using Vanilla GAN. Without the post-processing

step, the improvement of the supervised model with the adversarial addition is 3.5% in

RMSE. These results are based on using only the adversarial loss owing to the generated

images, as discussed in 3.2. The results are summarized in the table 4.1. Comparing the

results with those of Aleotti et al. [56], we can observe that the decrease in RMSE is of

the order of 2% as opposed to 3.5% in our case in the KITTI split. This improvement

can be attributed to the usage of the adversarial losses related to image reconstruction.

With a more careful usage of the hyperparameters used to relatively weigh the two loss

components as described in 3.2 and 3.3, a further drop in RMSE values can be achieved.

Our improvements in the Eigen split of the KITTI dataset are also more pronounced than

those of Aleotti et al. [56] with the improvement percentage in RMSE being 0.8 % for

their work and 1.90% in our case. Also, when the metric Absolute Relative Distance

(ARD) metric is considered, they report no improvement w.r.t their model without the

addition of adversarial training, while in our case, there is an improvement of 2.3%. It

must be noted here that no batch normalization has been used in the training of any

of the models. Hence, the improvements are solely obtained based on the introduction

of the adversarial losses. The discussions of [2] however, state that their improvements

are due to batch normalization in their trained models, and the partial decrease in error

can be attributed to model initialization and batch normalization rather than the usage

of adversarial losses. Based on the above observations and comparisons, it can be said

that adversarial training favors a network more, which has depth supervision added to it.

Furthermore, upon detailed analysis, we notice that the predicted disparities show some
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trends. These are described as under and be found in the figure 4.1:

• It is observed that the disparities obtained through training using GANs(Vanilla

GANs) produce disparities that are more continuous compared to scenarios where

GANs are not used. The reconstruction seems to retain the shape and the orientation

of structures present in the original input image to a better extent than not using

adversarial losses.

• Another interesting observation is that the boundaries in the predicted disparity

values are more distinct upon using GANs.

• It has also been observed that the usage of GANs makes it better to perceive different

objects placed at different depths. These differences are not so pronounced in the

baseline model, and boundaries of objects placed at different depths seem to be

overlapping. This can partially explain that GANs take into account the global

perspective instead of just penalizing the losses on a local patch. The differences in

the object boundaries and disparities at different depths have been better taken care

of due to the introduction of global adversarial losses.

• Yet another interesting observation was that the disparity layers are more in the

predicted disparity images when GANs are used. This can be seen in the legend at

the side of every image that where there are more variations in small range of disparity

values, meaning that the disparity layers are more well-separated and distinct. This

is an indication that only local but also global patches are considered by GANs. To

the best of our knowledge, this observation has not been reported elsewhere about

the benefits of using GANs in monocular depth estimation.

• Another consistent information is that Vanilla GANs perform the best in predicting

the depth followed by LS-GAN. This has proved to be true for all the datasets where

our method has been evaluated.

The above mentioned observations are in line with the decreased error metrics.
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4.10 Speed in various platforms

For the model training, two NVidia Tesla K40m GPUs provided by the Minnesota Super-

computing Institute 3 , have been used. Each of the K40m GPU has 11 GB of RAM

and 2880 CUDA cores. The inference speed using one of the GPUs is 76ms per image

or approximately 13fps. However, this inference time can be reduced by removing the

post-processing step, which would result in slightly spiky disparity values.

3 https://www.msi.umn.edu/content/gpu-cluster

https://www.msi.umn.edu/content/gpu-cluster
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Figure 4.1: Comparison of predicted disparities with different GAN variants.
As explained in section, 4.9, it can be seen in the bottom-most image, the pole is better
distinguished than the back wall due to usage of Vanilla GAN. The same is observed in
the second last image. Also, one can notice fewer overlaps in the structures in the second
row of images from the top. Please note that the images have been resized for the purpose
of viewing.
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Figure 4.2: Evaluation of different variants of GANs on the KITTI dataset. Here,
as shown in the legend along the side, higher intensity values represent distances which are
closer to the camera. We can clearly see how Vanilla GANs produce more distinct disparity
layers. This effect is more pronounced at lesser distances. For more discussion see text at
4.9.
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Figure 4.3: Evaluation of different variants of GANs on the KITTI dataset. Here,
as shown in the legend along the side, higher intensity values represent distances which are
closer to the camera. We can clearly see how Vanilla GANs produce more distinct disparity
layers. This effect is more pronounced at lesser distances. For more discussion see text at
4.9.
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Figure 4.4: Evaluation of different variants of GANs on the KITTI dataset. Here,
as shown in the legend along the side, higher intensity values represent distances which are
closer to the camera. We can clearly see how Vanilla GANs produce more distinct disparity
layers. This effect is more pronounced at lesser distances. For more discussion see text at
4.9.



42
R
G
B

G
T

N
o
G
A
N

V
an
ill
a
G
A
N

L
S
-G

A
N

Figure 4.5: Evaluation of different variants of GANs on the Eigen split of the
KITTI dataset. Here, as shown in the legend along the side, higher intensity values
represent distances which are closer to the camera. The benefits of using GANs extends
to this split as well and can be found in 4.2.
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Figure 4.6: Evaluation of different variants of GANs on the Eigen split of the
KITTI dataset. Here, as shown in the legend along the side, higher intensity values
represent distances which are closer to the camera. The benefits of using GANs extends
to this split as well and can be found in 4.2.
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Figure 4.7: Evaluation of different variants of GANs on the Eigen split of the
KITTI dataset. Here, as shown in the legend along the side, higher intensity values
represent distances which are closer to the camera. The benefits of using GANs extends
to this split as well and can be found in 4.2.
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Figure 4.8: Evaluation of different variants of GANs on the CityScapes [11]
dataset. Here, as shown in the legend along the side, higher intensity values represent
distances which are closer to the camera. The benefits of using GANs extends to this split
as well and can be found in 4.3.
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Figure 4.9: Evaluation of different variants of GANs on the CityScapes [11]
dataset. Here, as shown in the legend along the side, higher intensity values represent
distances which are closer to the camera. The benefits of using GANs extends to this split
as well and can be found in 4.3.
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Figure 4.10: Evaluation of different variants of GANs on the CityScapes [11]
dataset. Here, as shown in the legend along the side, higher intensity values represent
distances which are closer to the camera. The benefits of using GANs extends to this split
as well and can be found in 4.3.



Chapter 5

Conclusion

This thesis proposes the usage of adversarial training using a 2-step discriminator to deal

with the problem of monocular depth estimation. While during training, the model requires

an input of the stereo pair of images and a sparse lidar depth map; at inference, it can

generate depth from a single image. The discriminator is trained to distinguish between the

fake reconstructed images and the real images and also the fake and real disparity images.

Through extensive experiments, it has been proved that, though not all, some adversarial

training variants do help the cause of monocular depth estimation. A significant drop in

the values of the RMSE can be noted using adversarial training.

We also notice that with the addition of the depth supervised discriminator, the error val-

ues increase partially as compared to our baseline. Combining several losses comes with

its own set of problems. Carefully selecting hyperparameters with several loss terms poses

a challenge in our case. This challenge increases the need for finding a more effective way

of choosing hyperparameters for deep neural networks. Thus, we have been partially able

to prove the fact that GANs do, in fact, help address the issue of capturing global scene

context. With more careful consideration of the choice of hyperparameters, we can better

address the capturing of the global scene context issue.

Though it is not clear as to why Wasserstein GAN tends to disrupt the obtained disparities

and Vanilla and LS-GAN can improve it, it would be worthwhile to keep this a scope for

future research. To the best of our knowledge, there has been no significant research in

48



49

finding out the effectiveness of one GAN variant over the other in monocular depth estima-

tion. Also, usage of Conditional GANs, which would relate the input image to the depth,

even more, to bring the global perspective into action, is an exciting direction of future

research. Though this method of adding adversarial training has proved to be beneficial

for Godard’s Monodepth, it will be worthwhile to note its effect on other monocular depth

estimation networks or depth estimation networks in general.
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Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms.

A.1 Acronyms

Table A.1: Acronyms

Acronym Meaning

CNN Convolutional Neural Network

MDE Monocular Depth Estimation

AV Autonomous Vehicles

VAE Variational Auto-encoder

GAN Generative Adversarial Network

RNN Recurrent Neural Network

CRF Conditional Random Field
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